Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion

Information Disclosure by Informed Intermediary in Double Auction

Sanghoon Kim

University at Buffalo, The State University of New York

skim227@buffalo.edu

May 26, 2023 Chung-Ang University

Introduction ●0000	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 000	Conclusion O
Moti	vation			

- Role of intermediaries has been extensively studied in economics
 - Dealers: Rubinstein and Wolinsky (1987), Biglaiser (1993), Gehrig (1993), Spulber (1996), Rust and Hall (2003), etc.
 - Brokers: Yinger (1981), Yavas (1994)
- Intermediaries acquire information
 - More knowledgeable than typical buyers and sellers
- Can act as advisors or information providers
- Intermediaries' communications with buyers and sellers received relatively less attention

・ロト ・ 同ト ・ ヨト ・ ヨート ・ りゅつ

Introduction 00000	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 000	Conclusion O
Thic	naner			

- Studies intermediary (broker)'s communication and impact on market outcomes
 - Based on double auction setting
 - Introduce partially informed intermediary
 - Intermediary disclose information to
 - Both buyer and seller / either buyer or seller / none
- Compare two most common incentives
 - Maximize expected transaction price: percentage-fee intermediaries
 - Ex. real estate agents, financial brokers, online market platforms, etc.
 - Maximize trade probability: fixed-fee intermediaries
 - Ex. mediators, travel agents, matchmaking platforms, etc.

_				U
Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion

Preview of results

- Maximizing trade probability is superior to maximizing expected transaction price
 - $\bullet\,$ Intermediary discloses information truthfully w/ former incentive
 - $\bullet\,$ Intermediary may deceive buyer w/ latter incentive
 - Former incentive leads to higher trade probability and higher expected transaction price
- More information better
 - Buyer & seller mostly prefer intermediary disclosing information to both
 - Buyer & seller prefer exclusive information if intermediary discloses information to one party
 - Buyer & seller may prefer intermediary disclosing information to the other party than no disclosure

Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion
00000				

Table of contents

- 2 Model Setting
- Information Disclosure to: None, Seller, Buyer, Both
- 4 Equilibrium Analysis

00000	0000	00000000000000000000000	000	0
1.1.1				

Literature review

- Inefficiency in double auction: Chatterjee and Samuelson (1983), Myerson and Satterthwaite(1983)
- Inefficiency dissipates with many buyers & sellers: Gresik and Satterthwaite (1989), Satterthwaite and Williams (1989), Williams (1991), Rustichini et al. (1994), Cripps and Swinkels (2006), Reny and Perry (2006), Fudenberg et al. (2007)
- **Communication in double auction:** Farrell and Gibbons (1989), Suvorov and Tsybuleva (2010)
- Intermediary as advisor: Inderst and Ottaviani (2009, 2012), Mullainathan et al. (2012), Jiang et al. (2012), Anagol et al. (2017), Robles-Garcia (2020), Larsen et al. (2021)

Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion
00000	●000		000	O
Mod	el setti	ng		


- Three players: buyer, seller, informed intermediary
- Seller owns indivisible object; buyer wants to acquire
 - Buyer's valuation: $v^b \sim U_{[0,1]}$
 - Seller's valuation: $v^s \sim U_{[0,1]}$
- Risk neutral
- Additively separable utility (object & money)
 - Buyer's utility: $v^b p$
 - Seller's utility: $p v^s$
- No trade: utilities are normalized to 0

Model setting: Informed intermediary

• Informed intermediary has partial information

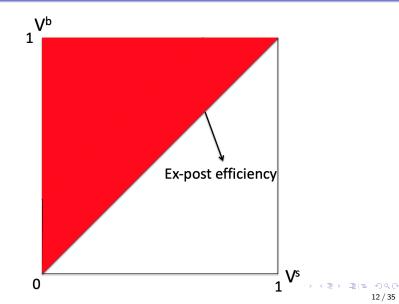
•
$$v^s \in [0,1-y]$$
 (Low) or $v^s \in [1-y,1]$ (High)

Introduction Nodel Setting Information Disclosure to: None, Seller, Buyer, Both Coordination Disclosure to: None, Seller, Buyer, Both Coordinatio Disclosure to: None, Seller

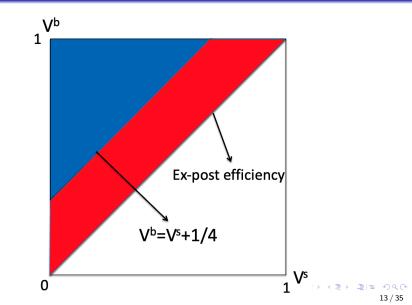
- Nature selects v^b from $U_{[0,1]}$ & v^s from $U_{[0,1]}$
- Buyer learns v^b & seller learns v^s
- Intermediary observes signals about $v^b \& v^s$
- Intermediary delivers private messages
- Buyer & seller simultaneously make offer b & s
- If $b \ge s$, trade object at $\frac{b+s}{2}$

Introduction Model Setting OOOO Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

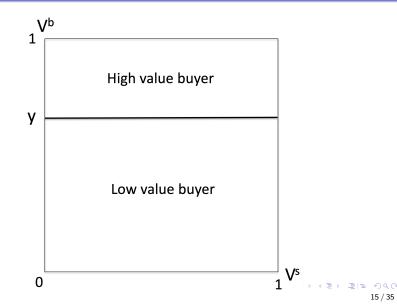
Definitions of candidate equilibria


- Intermediary discloses information to:
 - Both buyer & seller
 - Buyer only
 - Seller only
 - None (Babbling)
- After intermediary's messages, buyer & seller do double auction

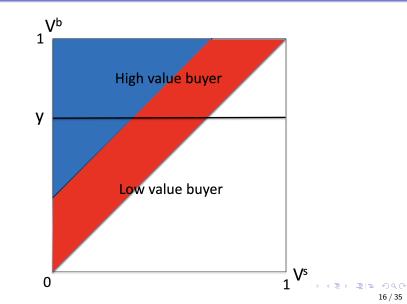
Dahh	ling of	nuilibrium		
Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion
00000	0000	•000000000000000000000000000000000000	000	0

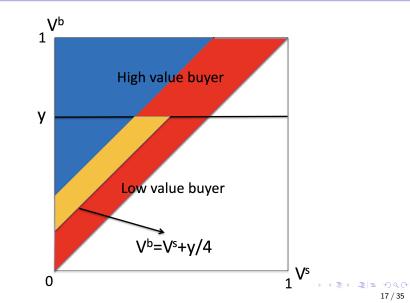

Dabbling equilibrium

- Intermediary does not discloses information at all: equivalent to Chatterjee and Samuelson (1983)
 - Buyer understates valuation: $b_0 \leq v^b$
 - Seller overstates valuation: $s_0 \ge v^s$
 - Even if v^b ≥ v^s, no trade with positive probability
 ⇒ Ex-post inefficient


Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

Seller receives information

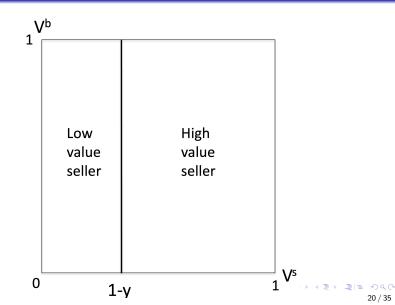

• Intermediary discloses information only to seller


- Seller knows whether buyer's valuation is low (≤ y) or high (≥ y)
- Seller less overstates if buyer's value is low: $v^s < s_{s1} < s_0$

troduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

ction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

Introduction	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis	Conclusion
		000000000000000000000000		

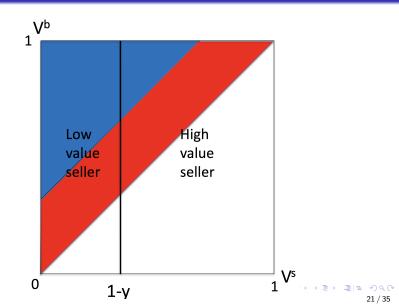

- Trade probability & expected price are higher than in babbling equilibrium
- Seller's expected payoff is greater than in babbling equilibrium
- Buyer's expected payoff is greater than in babbling equilibrium for lower y values (≤ 0.5892)
 - Seller has informational advantage (cost for buyer)
 - Lower *y*, lower seller's offer with low-value buyer (benefit for buyer)
 - \Rightarrow Benefit decreases with y values
- Intermediary has no incentive to lie regardless of incentives (max probability or max expected price)

Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

Buyer receives information

• Intermediary discloses information only to buyer

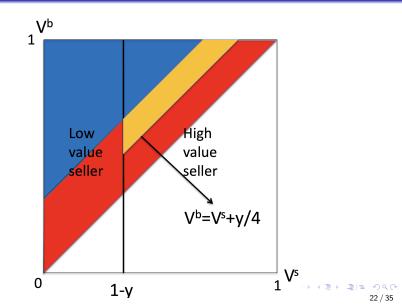
- Buyer knows whether seller's valuation is low $(\leq 1-y)$ or high $(\geq 1-y)$
- Buyer less understates if seller's value is high: $b_0 \leq b_{b1} \leq v^b$



Introduction 00000 Model Setting

Information Disclosure to: None, Seller, Buyer, Both

Equilibrium Analysis


Conclusion 0

Introduction 00000 Model Setting

Information Disclosure to: None, Seller, Buyer, Both

Equilibrium Analysis 000 Conclusion 0

Introduction 00000	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 000	Conclusion 0

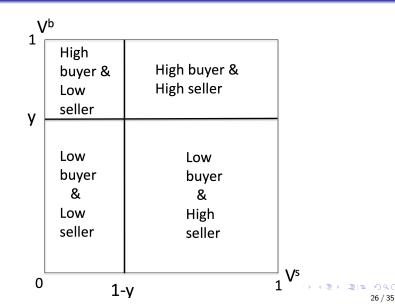
Buyer receives information

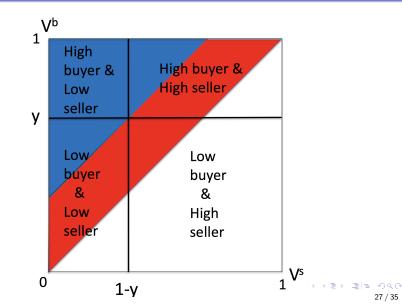
- Trade probability & expected price are higher than in babbling equilibrium
- Buyer's expected payoff is greater than in babbling equilibrium
- Seller's expected payoff is greater than in babbling equilibrium for lower y values (≤ 0.5892)
 - Buyer has informational advantage (cost for seller)
 - Higher 1 y, higher buyer's offer with high-value seller (benefit for seller)

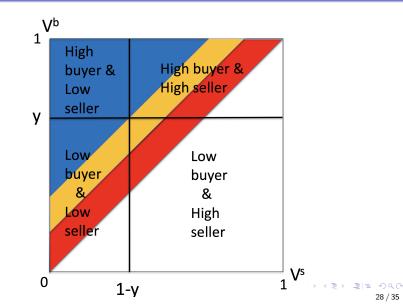
 \Rightarrow Benefit increases with 1 - y values

Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

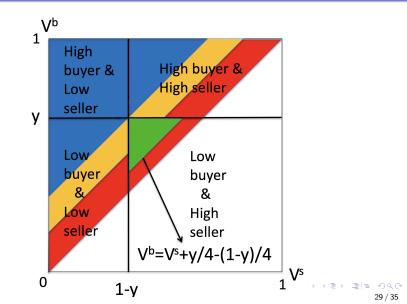
- Intermediary has no incentive to lie if max probability
- Incentive to deceive buyer into believing seller has high value if max expected price for higher $y (\geq 0.5523)$
 - Lie leads to higher buyer's offer, higher price if trade (benefit for intermediary)
 - Deceived buyer could walk away (cost)
 - \Rightarrow Cost increases with 1-y
 - \Rightarrow Cost exceeds benefit for smaller y
 - For higher y, goes back to babbling equilibrium
- Max probability incentive leads to higher probability & higher expected price than max expected price incentive


Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion occorrection Setting Conclusion S


Both buyer & seller receive information


- Intermediary discloses information to both buyer & seller
 - Seller knows whether buyer's valuation is low (≤ y) or high (≥ y)
 ⇒ less overstates: v^s < s₂ < s₅₁ < s₀
 - Buyer knows whether seller's valuation is low $(\leq 1 y)$ or high $(\geq 1 y)$ \Rightarrow less understates: $b_0 \leq b_{b1} \leq b_2 \leq v^b$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()


Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Equilibrium Analysis Conclusion

Introduction Model Setting Information Disclosure to: None, Seller, Buyer, Both Ococo Oco

- Trade probability & expected price are higher than all other equilibria
- Buyer's & seller's expected payoffs are greater than all other equilibria for lower $y \ (\leq 0.618)$
 - Exclusive information provides advantage
 - Low-value buyer & high-value seller prefer revealing their types for lower *y*
 - \Rightarrow Recall one-sided information disclosure cases

- Intermediary has no incentive to lie if max probability
- Incentive to deceive buyer into believing seller has high value if max expected price for higher y
 ⇒ Same reason as previous case
- Max probability incentive leads to higher probability & higher expected price than max expected price incentive

- Intermediary maximizes trade probability: all four equilibria exist for all y ∈ (0, 1)
- Intermediary maximizes expected price:

y value	Existence of equilibria
$0 < y \le 0.4819$	babbling, seller, buyer, both
0.4819 < y < 0.5	babbling, seller, buyer
$0.5 \le y \le 0.5179$	babbling, seller, buyer, both
$0.5179 < y \le 0.5523$	babbling, seller, buyer
0.5523 < y < 1	babbling, seller

Introduction 00000	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 0●0	Conclusion O
Com	parison	of equilibria		

- Trade probability: babbling < seller = buyer < both
- Expected price:

	babbling $<$ seller $<$ buyer $<$ both
0.7133 < y < 1	babbling < buyer < seller < both

• Buyer's and seller's expected payoff:

$0 < y \le 0.25$	babbling $<$ other $=$ me $<$ both
$0.25 < y \le 0.5892$	babbling $<$ other $<$ me $<$ both
$0.5892 < y \le 0.618$	other $<$ babbling $<$ me $<$ both
0.618 < y < 1	other < babbling < both < me

Eauil	ihrium	coloction		
Introduction 00000		Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 00●	Conclusion O

- Equilibrium selection
 - Intermediary maximizes trade probability: both
 - Intermediary maximizes expected price:

y value	Existence of equilibria	
$0 < y \le 0.4819$	babbling, seller, buyer, both	
0.4819 < y < 0.5	babbling, seller, buyer	
$0.5 \le y \le 0.5179$	babbling, seller, buyer, both	
$0.5179 < y \le 0.5523$	babbling, seller, buyer	
0.5523 < y < 1	babbling, seller	

 Max probability incentive leads to higher probability & higher expected price than max expected price incentive

Introduction 00000	Model Setting	Information Disclosure to: None, Seller, Buyer, Both	Equilibrium Analysis 000	Conclusion •
Conc	lusion			

- Intermediary can improve efficiency by disclosing information
- Buyer & seller prefer more information
- Intermediary maximizing trade probability is superior to other maximizing expected transaction price
- Provide important policy implications for designing compensation schemes for intermediaries

Thank you

Sanghoon Kim

skim227@buffalo.edu