Posting Frequency and Pricing in an Online Resale Market

Yeonju Baik

Korea Institute of Finance

April 20, 2023

• Product visibility in online markets can increase traffic and consumer purchases

- Product visibility in online markets can increase traffic and consumer purchases
 - Wall Street Journal (2019):
 When people are searching for products on Amazon, nearly two-thirds of all product clicks come from the first page of results

- Product visibility in online markets can increase traffic and consumer purchases
 - Wall Street Journal (2019):
 When people are searching for products on Amazon, nearly two-thirds of all product clicks come from the first page of results
- In many used markets, sellers use posting as a tool to promote their products:

- Product visibility in online markets can increase traffic and consumer purchases
 - Wall Street Journal (2019):
 When people are searching for products on Amazon, nearly two-thirds of all product clicks come from the first page of results
- In many used markets, sellers use posting as a tool to promote their products:
 - Re-posting (도배: 중고나라, Facebook marketplace, Craigslist)

Example

- Product visibility in online markets can increase traffic and consumer purchases
 - Wall Street Journal (2019):
 When people are searching for products on Amazon, nearly two-thirds of all product clicks come from the first page of results
- In many used markets, sellers use posting as a tool to promote their products:
 - Re-posting (도배: 중고나라, Facebook marketplace, Craigslist)

Example

- Question:
 - How does product visibility affect prices in equilibrium?
 - Why is reposting commonly observed across many secondhand trading platforms?

- O How does posting frequency relate to a seller's pricing?
 - Using theoretical predictions, I infer how sellers compete in price
- O To what extent is posting frequency responsible for a seller's market power(pricing power)?
- How does posting frequency relate to platform's profit?

- O How does posting frequency relate to a seller's pricing?
 - Using theoretical predictions, I infer how sellers compete in price
- O To what extent is posting frequency responsible for a seller's market power(pricing power)?
- How does posting frequency relate to platform's profit?

- I How does posting frequency relate to a seller's pricing?
 - Using theoretical predictions, I infer how sellers compete in price
- O To what extent is posting frequency responsible for a seller's market power(pricing power)?
- How does posting frequency relate to platform's profit?
 - Data: Collect high-frequency data on listings in a unique online cellphone resale platform, "Cetizen"

- I How does posting frequency relate to a seller's pricing?
 - Using theoretical predictions, I infer how sellers compete in price
- O To what extent is posting frequency responsible for a seller's market power(pricing power)?
- How does posting frequency relate to platform's profit?
 - Data: Collect high-frequency data on listings in a unique online cellphone resale platform, "Cetizen"
 - Match price competition model: Using the observed price distribution, I infer how sellers compete in price
 - Match the data with model prediction

- I How does posting frequency relate to a seller's pricing?
 - Using theoretical predictions, I infer how sellers compete in price
- O To what extent is posting frequency responsible for a seller's market power(pricing power)?
- How does posting frequency relate to platform's profit?
 - Data: Collect high-frequency data on listings in a unique online cellphone resale platform, "Cetizen"
 - Match price competition model: Using the observed price distribution, I infer how sellers compete in price
 - Match the data with model prediction
 - Quantify market power: Recover the cost parameter for advertising and calculate markups

Preview of Results

- Sellers whose post share is higher by 10%, sell at a 6.6% higher price
 - e.g., Galaxy S9 has 10 posts/hr, seller A posts 1/hr (10%), B posts 2/hr (20%), then seller B has 6.6% higher price than seller A
- In the inferred pricing competition structure, sellers who post less face more elastic consumer demand
- Frequent posters have higher market power in the inferred price competition structure than infrequent posters

Literature

- Online market
 - Seller behavior in the online market: Huang(2021), Jolivet et al.(2016)
 - Rankings: Ursu(2018), Santos et al.(2017), Moshary(2021)
- Models of advertising
 - Butters(1977), Stahl II(1994), McAfee(1994), Haan and Moraga-Gonzalez(2011), Robert and Stahl(1993), Armstrong et al.(2009)
 - The role of prominence: Rhodes(2011), Armstrong et al(2009), Chen and He(2011), Armstrong, Zhou(2011), Armstrong, Vickers(2022)
- Testing between search models
 - De Los Santos(2012), Hong and Shum(2006), Honka and Chintagupta(2017)

Literature

- Online market
 - Seller behavior in the online market: Huang(2021), Jolivet et al.(2016)
 - Rankings: Ursu(2018), Santos et al.(2017), Moshary(2021)
- Models of advertising
 - Butters(1977), Stahl II(1994), McAfee(1994), Haan and Moraga-Gonzalez(2011), Robert and Stahl(1993), Armstrong et al.(2009)
 - The role of prominence: Rhodes(2011), Armstrong et al(2009), Chen and He(2011), Armstrong, Zhou(2011), Armstrong, Vickers(2022)
- Testing between search models
 - De Los Santos(2012), Hong and Shum(2006), Honka and Chintagupta(2017)

$\rightarrow \text{Contributions}$

- First paper to test interaction framework(Armstrong, Vickers(2022)) prediction
- First paper to provide empirical evidence regarding how posting frequency is related to market price

Outline

Data

Quantifying Market Power

Data: Used Cellphone

- Used cellphone trading platform called Cetizen
- Accounts for 20% of used cell phone market trades
 - Listings from Feb. 5th-Aug. 29th (2020) Samsung and Apple
 - No extra fee, no algorithm Data cleaning
 - Postings are listed in the order of the arrival
 - A number of sellers provide wide range of products Seller heterogeneity
 - Repeated posting (도배): Advertising effort
 - Re-posting: Renewing an old posting
 - Duplicate posting: Posting the same thing repeatedly

Platform rules

Repeated Posting: Re-Posting

- After sellers post the product, they have a choice to renew
- Sellers do not change the price frequently when they repost

	진행중인 거래	판매대기 1	거래완료 0	
판매대기중			물품번호 27836515	· 상세보기 >
	갤럭시 J3 2017 16GB SM-J330K 등록일 2021-12-28 16:08:	34		200,000 원 다. 무료
구매자를 기다리고 있습니	I다. 수정재등록/최신글로 등록(1	일 1회)을 하실 수 있습니다.		
판매취소			수정/재등록 초	1신글로 등록

Price dynamics

Repeated Posting: Duplicated Posting

가동일 2020.07.24	객객시 A90 5G 128GB SM-A908N KT 감박시 A60 KT 40이트 128G8 슈글 컨텍(무상남음) 용급 일부누역 예약전 유급함전 세종개동	14분전 178,000 원 다 무료
	갤럭시 A12 32GB 5M-A125N KT [가자동 정상에서 관기기 실사업치 상성 A12 산동산시 가능 4965 물역스 목8778 교급함인 세요가능	14분전 139,000 원 다 무료
-	객객식 A12 32GB SM-A125N KT [가제동 정상에지 공기가 실사원회 상성 A12 전동신사 가능 	14분전 139,000 원 다 무료
	객역시 A12 32GB 5M-A125N KT [가객동 점심배지 공가가! 실사원의 삼성 A12 전통신사 가능 4945 없역스 환환가면 요금함연 서초가능	14분전 139,000 원 다 무료
7HE: 02 2020.09.22	객리시 와이트4 32GB SM-A2055 9년 경막시 와이트4 32GB 발액 응급 문북탄동 북왕가는 요금방언 의유가능	14분전 76,000 원 다 3,000

Back to data

Empirical Fact 1

• Repeated posting increases the probability of a sale (i post, j seller k product)

$$\mathsf{Sold}_{ijk} = \beta_1 \underbrace{F_{ijk}}_{\mathsf{posting freq}} + \beta_2 \underbrace{F_k}_{\mathsf{model freq}} + \beta_3 \underbrace{F_j}_{\mathsf{seller freq}} + \beta_4 Z_{ijt} + e_{ijt}$$

Table 1: Product Sales

	Sold	Sold	
<pre># Repeated/Day(avg.)</pre>	0.0936***	0.0901***	
	(0.00890)	(0.00878)	
Model share(avg.)	-0.356	-0.168	
	(0.495)	(0.557)	
<pre># Seller Freq/Day(avg.)</pre>	0.000133***	0.000149***	
	(0.0000233)	(0.0000284)	
Daygap(avg.)		0.000484*	
		(0.000226)	
N	84849	52225	
R-sq	0.011	0.015	

Distribution On sales

• Unit of analysis: posting with a unique description

• Z_{ijt} (controls): Price Ratio (\$), memory size, conditions, warranty

Empirical Fact 2

• Listings that are posted more have higher prices

 $\mathsf{Pr}_{ijkt} = \beta_1 \underbrace{F_{ijk}}_{\mathsf{Posting Freq}} + \beta_2 \underbrace{F_{kt}}_{\mathsf{Model Freq}} + \beta_3 \underbrace{F_{jt}}_{\mathsf{Seller Freq}} + \beta_4 \underbrace{F_{jkt}}_{\mathsf{Seller,Model Freq}} + \beta_4 Z_{ijkt} + \eta_k + \gamma_j + \gamma_t + e_{ijt}$

Variable	Price(\$)	Price(\$)	Price(\$)
# Repeated	0.168***	0.155***	0.144***
	(0.0276)	(0.0267)	(0.0272)
# Model×date×hour	-0.285**	-0.304**	-0.425***
	(0.102)	(0.102)	(0.102)
# Seller×date×hour		0.0438***	-0.00114
		(0.0126)	(0.0215)
# Seller×date×hour×model			1.743**
			(0.615)
Const	YES	YES	YES
Controls ¹	YES	YES	YES
Model FE	YES	YES	YES
Month FE	YES	YES	YES
Seller FE	YES	YES	YES
N	38965	38965	38965
R-sa	0.941	0.941	0.941

Table 2: Price and the Number of Postings

* Unit of analysis is a posting with a unique description, Only include listings from the sellers who post more than 20 postings per 1 hour (> 20/hr)

¹Controls: machine condition, warranty, Unit of analysis is each listing

• Why are the sellers who post more able to charge higher prices?

Why are the sellers who post more able to charge higher prices?We want to understand how sellers are competing

- Why are the sellers who post more able to charge higher prices?
 - We want to understand how sellers are competing
 - This depends on how consumers are searching: Competitors are the one who are included in the same consideration set

- Why are the sellers who post more able to charge higher prices?
 - We want to understand how sellers are competing
 - This depends on how consumers are searching: Competitors are the one who are included in the same consideration set
 - Posting changes how consumer form its consideration set

• Why are the sellers who post more able to charge higher prices?

- We want to understand how sellers are competing
- This depends on how consumers are searching: Competitors are the one who are included in the same consideration set
- Posting changes how consumer form its consideration set
- Two competing models: Independence, nested

• Why are the sellers who post more able to charge higher prices?

- We want to understand how sellers are competing
- This depends on how consumers are searching: Competitors are the one who are included in the same consideration set
- Posting changes how consumer form its consideration set
- Two competing models: Independence, nested
- Model (Armstrong, Vickers(2022))
 - Assumption: Homogeneous good, competing in price (mixed pricing strategy)
 - (Consumer's) Consideration probability: Reach $(\sigma; \sigma_1, \sigma_2, \sigma_3)$

Model: idea

- Each posting by seller i enters the market with the rate σ_i $(\sigma_1 \leq \cdots \leq \sigma_n \text{ (poisson)})$
- Frequency of meeting any seller: λ
- Consumer considers N options on the first page

Model: idea

 $P(\sigma_n \text{ enters within N elements} | \sigma_1)$

Model: idea

$P(\sigma_n \text{ enters within N elements} | \sigma_1)$

ł

$P(\sigma_n \text{ enters within N elements} | \sigma_1)$

S_N: the time t until N postings enter the market (Gamma(N, λ))
X_n(t): time t elapsed until seller n enter (Exp(σ_n))

$$P(\sigma_n \text{ enters within N elements} | \sigma_1) = \int_0^\infty P(S_N = t) P(X_n \le t) dt = \int_0^\infty \frac{\lambda^N z^{N-1} e^{-\lambda z}}{(N-1)!} (1 - e^{-\sigma_n z}) dz$$
$$= 1 - \frac{\lambda^N}{(\lambda + \sigma_n)^N}$$

Model: Starting from the list

• If
$$N = 1$$
, meeting seller n : $\frac{\sigma_n}{\lambda + \sigma_n}$

Model: Starting from the list

- If N = 1, meeting seller n : $\frac{\sigma_n}{\lambda + \sigma_n}$ If N gets larger...

Model: Starting from the list

• If
$$N = 1$$
, meeting seller n : $\frac{\sigma_n}{\lambda + \sigma_n}$

● If N gets larger · · ·

Figure 1: Meeting probability

Potential Models of Seller Pricing Competition

- Simple case: 3 seller competition
 - Sellers: Reach $(\sigma_1, \sigma_2, \sigma_3)$
 - Consumers: $\alpha_1, \alpha_{12}, \cdots$
- Independent (Random match)

Figure 2: Independent Structure

- Consumers choose the product at the top of the list
- $P(\text{Large }\sigma|\text{Small }\sigma) = P(\text{Large }\sigma)$

Potential Models of Seller Pricing Competition

In Nested Structure (Extensive search)

Figure 3: Nested Structure

Nested structure

- Compare the options in the list
- The probability is Not independent across the sellers
- $P(\text{Large }\sigma|\text{Small }\sigma) = 1$
Potential Models of Seller Pricing Competition

In Nested Structure (Extensive search)

Figure 3: Nested Structure

Nested structure

- Compare the options in the list
- The probability is Not independent across the sellers
- $P(\text{Large }\sigma|\text{Small }\sigma) = 1$
- Key intuition: In nested model, consumers who see small-reach sellers already saw the big-reach sellers
 - \rightarrow Small sellers face elastic demand

Model Predictions

• Model predictions why

Model Predictions

- Model predictions why
 - In the independent structure, the minimum price is the same across the sellers, maximum price increases
 - $\ensuremath{\mathfrak{O}}$ In the nested structure, the price supports of each seller increase by the size of σ

Model Predictions

- Model predictions why
 - In the independent structure, the minimum price is the same across the sellers, maximum price increases
 - In the nested structure, the price supports of each seller increase by the size of σ
- Two tests:
 - Sanity check: First order stochastic dominance price distributions
 - Test between two pricing models: Minimum price

Identify which of the two models better fits the data

- Identify which of the two models better fits the data
- Using the model, quantify seller's market power (pricing power)

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.
- \rightarrow To do so

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.

\rightarrow To do so

Check model assumptions

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.

\rightarrow To do so

- Check model assumptions
- Calculate Key components

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.

\rightarrow To do so

- Check model assumptions
- Calculate Key components
- Compare model predictions

- Identify which of the two models better fits the data
- Osing the model, quantify seller's market power (pricing power)
 - Why two models? Difference in demand price elasticity lead to difference in markups: The ability to charge price premium
 - It can show how much each seller can enjoy by posting more than competitors.

\rightarrow To do so

- Check model assumptions
- Calculate Key components
- Compare model predictions
 - Compare the two competing price competition models
 - Statistical tests are conducted on each cellphone model (Galaxy S9, iPhone 10, etc.)

• Check model assumptions

- Check model assumptions
- Product homogeneity assumption
 - \rightarrow Several assumptions are needed
 - Consumers are homogeneous in utility (Wildenbeest (2011))
 - Observable characteristics are additively separable (Wildenbeest (2011), Haile, Hong, Shum (2003))
 - Sellers are competing with residual price: (*i*: listing, *k*: model, *t*: market)

$$\begin{aligned} p_{ikt} &= \delta_{ikt} + \epsilon_{ikt} \\ &= QT_{ikt}\beta_1 + GR_{ikt}\beta_2 + \text{Size}_{ikt}\beta_3 + \gamma_k + \text{Month FE} + \epsilon_{ikt} \\ \hat{p}_{ikt} &= \hat{\gamma}_k + \hat{\epsilon}_{ikt} \end{aligned}$$

Price variation decomposition Price regression

Price regression Comparison

- Check model assumptions
- Product homogeneity assumption
 - \rightarrow Several assumptions are needed
 - Consumers are homogeneous in utility (Wildenbeest (2011))
 - Observable characteristics are additively separable (Wildenbeest (2011), Haile, Hong, Shum (2003))
 - Sellers are competing with residual price: (*i*: listing, *k*: model, *t*: market)

$$p_{ikt} = \delta_{ikt} + \epsilon_{ikt}$$

= $QT_{ikt}\beta_1 + GR_{ikt}\beta_2 + \text{Size}_{ikt}\beta_3 + \gamma_k + \text{Month FE} + \epsilon_{ikt}$
 $\hat{p}_{ikt} = \hat{\gamma}_k + \hat{\epsilon}_{ikt}$

Price variation decomposition Y Price regression Y Price regression Comparison

2 Mixed pricing strategy assumption

- Rank reversal statistics (Chandra, Tappata(2011))
- Similar to the literature Autocorrelation

Statistics

Construction of Reach (σ)

- Reach (σ) : Matching chance for each seller
 - Hour: Frequency of listings
 - e.g., Galaxy S9 posted 10/hr, seller A posts 2/hr = 20%
 - \blacksquare Robustness check: Alternative definition of σ
 - Posting share of a seller measured in one month window
 - Posting of each title measured in 1 week window
- $\bullet\,$ Classify sellers into three groups based on the size of $\sigma\,$

Construction of Reach (σ)

- Reach (σ) : Matching chance for each seller
 - Hour: Frequency of listings
 - e.g., Galaxy S9 posted 10/hr, seller A posts 2/hr = 20%
 - \blacksquare Robustness check: Alternative definition of σ
 - Posting share of a seller measured in one month window
 - Posting of each title measured in 1 week window
- ullet Classify sellers into three groups based on the size of σ

Seller tercile	σ (mean)	σ (median)	σ (std.)
Group 1	0.134	0.128	0.048
Group 2	0.224	0.209	0.074
Group 3	0.350	0.320	0.155

Table 3: Construction of σ Group

Step 2

Step 1: Stochastic Monotonicity Test

- Step 1: Stochastic Monotone (FOSD) (Chetverikov et al.(2020))
- H_0 : Price distributions increase wrt. σ
- Cannot reject *H*₀: Sanity check test ∨

Samples	Galaxy S9
April, prof.	1.23
	(0.17)
July, prof.	0.99
	(0.5)
April, prof., brand> 0.8	1.45
	(0.06)
April, prof., brand< 0.6	0.78
	(0.70)
Whole data	0.53
	(1.00)
p-value mean	0.354
Criterion p-value	0.025

Table 4: Step 1 Result: Galaxy S9

- Numbers are T stats of the non-parametric test, p-value in the parentheses.
- Prof.: The sellers who sell more than 5 models within 1 month
- Unit of analysis: Unique listing Step 1 test

Step 2: Quantile Testing

- Step 2: Quantile test (Wilcox et al.(2014))
 - Group sellers into 3 by σ Reach
 - Compare the quantiles

$$H_0: \hat{p}_{iq} - \hat{p}_{jq} = 0 \tag{1}$$

- Overall: Nested Structure²
 - Some heterogeneity across cellphone models, which depends on market thickness

Other grouping Other cellphone models Market thickness

Table 5: Step 2 Result: Galaxy S9, July

	Group1	Group3	Diff.	p-value
<i>p</i> _{0.01}	0.103	0.154	-0.051	0.0000
			(-0.057,-0.044)	
<i>p</i> _{0.05}	0.145	0.168	-0.023	0.0000
			(-0.032,-0.017)	
$p_{0.1}$	0.158	0.183	-0.025	0.0000
			(-0.034,-0.019)	
n	976	976		

²Joint testing across various sub samples (DiCiccio et al.(2020))

Step 2: Quantile Testing

- Step 2: Quantile test (Wilcox et al.(2014))
 - Group sellers into 3 by σ Reach
 - Compare the quantiles

$$H_0: \hat{p}_{iq} - \hat{p}_{jq} = 0$$
 (1)

- Overall: Nested Structure²
 - Some heterogeneity across cellphone models, which depends on market thickness

Other grouping Other cellphone models Market thickness

Table 5: Step 2 Result: Galaxy S9, July

	Group1	Group3	Diff.	p-value
<i>p</i> _{0.01}	0.103	0.154	-0.051	0.0000
			(-0.057,-0.044)	
<i>p</i> _{0.05}	0.145	0.168	-0.023	0.0000
			(-0.032,-0.017)	
<i>p</i> _{0.1}	0.158	0.183	-0.025	0.0000
			(-0.034,-0.019)	
n	976	976		

• Takeaway: Min. price for group 3 is larger

²Joint testing across various sub samples (DiCiccio et al.(2020))

Robustness Check: Quantile Regression

• Quantile regression: (in general) Nested structure

$$p_{imt} = \delta_q \sigma_{im} + \gamma_t + \mu_m + u_{q,imt}$$

Table 6: Quantile Regression

au	Estimate of δ
0.05	56.28***
	(3.203)
0.1	53.04***
	(4.624)
0.5	59.84***
	(3.592)
0.9	41.15***
	(4.254)
0.95	29.90***
	(5.557)
No. Models	14
Month FE	0
No. Observations	23098

- seller *i*, market *t*, model *m*
- **p**_{*imt*} : price, γ_t : month FE, μ_m : model FE
- Unit of analysis: Average weekly price of a seller

Robustness check

Nested prediction

(2)

Market Power: Price Competition Structure

- To what extent is advertising responsible for a seller's market power?
- Assume the following
 - **(**) Sellers form beliefs about price distributions and σ distributions

 - 3 Compete in price, $F(p|\sigma)$
- Assumption: Input market is competitive (same input cost), difference in implicit cost for posting

Market Power: Price Competition Structure and Intuition

Figure 6: Posting Decision

• Compete with the firms that are posting more frequently

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$
- Nested structure

$$\pi_{2}(p,\sigma_{2}) = \underbrace{p(1-F_{3}(p))}_{\sigma > \sigma_{2}} ((\sigma_{2} - \sigma_{1}) + \sigma_{1} \underbrace{(1-F_{1}(p))}_{\sigma < \sigma_{2}}) - c(\sigma_{2})$$
Marginal revenue

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$
- Nested structure

$$\pi_{2}(p,\sigma_{2}) = \underbrace{p(1-F_{3}(p))}_{\sigma > \sigma_{2}} \left((\sigma_{2} - \sigma_{1}) + \sigma_{1} \underbrace{(1-F_{1}(p))}_{\sigma < \sigma_{2}} \right) - c(\sigma_{2})$$
Marginal revenue

- The cost of advertising: $c(\sigma_2) = \frac{1}{2}\sigma_2^2 w_2$
 - σ₂: size of reach, w₂: cost parameter

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$
- Nested structure

$$\pi_{2}(p,\sigma_{2}) = \underbrace{p(1-F_{3}(p))}_{\sigma > \sigma_{2}} \left((\sigma_{2} - \sigma_{1}) + \sigma_{1} \underbrace{(1-F_{1}(p))}_{\sigma < \sigma_{2}} \right) - c(\sigma_{2})$$
Marginal revenue

- The cost of advertising: $c(\sigma_2) = \frac{1}{2}\sigma_2^2 w_2$
 - σ₂: size of reach, w₂: cost parameter

(Nested) : MR =
$$p(1 - F_3(p)) = c'(\sigma_2) = w_2\sigma_2 = MC$$

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$
- Nested structure

$$\pi_{2}(p,\sigma_{2}) = \underbrace{p(1-F_{3}(p))}_{\sigma > \sigma_{2}} ((\sigma_{2} - \sigma_{1}) + \sigma_{1} \underbrace{(1-F_{1}(p))}_{\sigma < \sigma_{2}}) - c(\sigma_{2})$$
Marginal revenue

- The cost of advertising: $c(\sigma_2) = \frac{1}{2}\sigma_2^2 w_2$
 - σ₂: size of reach, w₂: cost parameter

(Nested) :
$$MR = p(1 - F_3(p)) = c'(\sigma_2) = w_2\sigma_2 = MC$$

• Mixed price strategy: Seller's minimum price (L₂, 5% price)

$$w_2 = \frac{L_2}{\sigma_2}$$

- Focusing on the choice of an arbitrary seller 2
- Seller 1 and seller 3 are also conducting mixed pricing strategy $(F_1(p), F_3(p))$
- Nested structure

$$\pi_{2}(p,\sigma_{2}) = \underbrace{p(1-F_{3}(p))}_{\sigma > \sigma_{2}} ((\sigma_{2} - \sigma_{1}) + \sigma_{1} \underbrace{(1-F_{1}(p))}_{\sigma < \sigma_{2}}) - c(\sigma_{2})$$
Marginal revenue

- The cost of advertising: $c(\sigma_2) = \frac{1}{2}\sigma_2^2 w_2$
 - σ₂: size of reach, w₂: cost parameter

(Nested) : MR =
$$p(1 - F_3(p)) = c'(\sigma_2) = w_2\sigma_2 = MC$$

• Mixed price strategy: Seller's minimum price (L₂, 5% price)

$$w_2 = \frac{L_2}{\sigma_2}$$

• Use empirical objects: L_2, σ_2 are observed

Market Power: Price Competition in Independent Structure

- Independent structure
- For any arbitrary seller i, shares the same minimum price p_0

$$\pi_i(\boldsymbol{p},\sigma_i) = \sigma_i \underbrace{\boldsymbol{p}_0}_{\text{Marginal revenue}} - \boldsymbol{c}(\sigma_i)$$

(Independent) :
$$MR = p_0 = c'(\sigma_i) = w_i \sigma_i = MC$$

 $w_i = \frac{p_0}{\sigma_i}$

- Mixed price strategy: Same minimum price (5% price)
- Use empirical objects: p_0, σ_i are observed

Estimated Results: Markups

- Markups: $\frac{p-\sigma_i w_i}{p}$
- Frequent sellers have higher markup in the nested structure

lable	7:	Markups II	n Int	eraction	Structure

Galaxy S9 (Nested)	Median
Group 1 seller	0.061
Group 2 seller	0.128
Group 3 seller	0.135
iPhone XR (Independent)	Median
Group 1 seller	0.124
Group 2 seller	0.141
Group 3 seller	0.084

• Takeaway: The sellers who post more have more market power if the interaction structure is nested

Platform's Return

- Platform's revenue: Commission
- Re-posting increases the probability of sale
- The sellers who repost more have higher prices
 - Increases platform's return
 - Consumer's welfare would decrease

$$E(p\hat{q}_{\mathsf{sell}}|\sigma, X) = \int p\hat{q}_{\mathsf{sell}}(p, \sigma)f(p|\sigma, X)dp \tag{3}$$

Table 8: One listing expected return, Galaxy S9

Seller Group	Mean (\$)
Group 1	5.718
	(1.549)
Group 2	6.082
	(2.128)
Group 3	7.32
	(2.572)

• Takeaway: Repeated posting can be good for platform

Conclusion

• Online market sellers' behavior

- I find that sellers who post more charge higher prices
- The mechanism: Nested interaction structure gives more market power to the frequent posters
- Thinner markets are likely to show nested structure
- Platform gets higher profit from the sellers who post more

Thank You!
Re-posting

제목	작성자	작성일	조회
536855817 [스팀] 다크사이더스3 22000원 [편예 🍙	직 3 Man 🛛	2018.12.04.	11
536806672 스팀 카스 글읍 ㄱㅈ팜 📜에 🕥	동물아신비주의 🛙	2018.12.04.	6
536725976 스팀 게임키 팝니다 (험불번들 10월자// 히됸포크스, 그렘린즈, 아메리칸트럭, 위워히어루, 울드맨스저니) 판매 @	1	2018.12.04.	29
536610442 스림선물로 배그/gta팔아요 21000원 판매 🖨	찌 응 명 🛙	2018.12.04.	13
536596863 ▶▶ 스팀게임 PC 몬스터 헌터 월드&디럭스 기프트판매합니다 ◀◀ 편 🕰	TOP: STEAM	2018.12.04.	11
536596188 ▶▶ 스팀게임 PC 어쎄신크리드(어쌔신크리드) 오디세이 기프트판매합니다 ◀◀ [편예]@		2018.12.04.	11
●스팅게임섬물판매● 어베신크리드 오디세이 몬스터헌터 FM2019 림얼드 등 536595398 모든스팅게임, VR판매 ● 후기2300개++ ● 지인추천, 후기이벤트 중 ● 사업자 등록 판매업체 ● [판매]@	TOXE, ETEAM	2018.12.04.	18
536487932 스팀 GTA5 + 카스글읍 판매합니다. [편해 @	지네가	2018.12.03.	24
536476829 스팀 GTA5 판매합니다 [편액]@	A - 200	2018.12.03.	26
536328063 ▶▶ 스템게임 FM2019 (Football Manager 2019) 기프트판매한니다 ◀◀ 😢 🗐	TOXESSTEAM	2018.12.03.	5
536294964 ▶▶ 스팀게임 PC 몬스터 헌터 월드&디럭스 기프트판매합니다 ◀◀ 편예@	TOXIC STEAM	2018.12.03.	9
536288535 ▶ 스템게임 PC 어쎄신크리드(어쌔신크리드) 오디세이 기프트판매합니다 ◀◀ [편예]@	TOXESTEAM	2018.12.03.	5
●스팅게임성물판매● 어베신크리드 오디세이 몬스터헌터 FM2019 림열드 등 536259315 모든스팅게임, VR판매 ● 후기2300개++ ● 지인추천, 후기이벤트 중 ● 사업자 등록 판매업체 ● [편해]@	TODE STEAM	2018.12.03.	24
536113987 GTA5 + 카스글읍 스팀아이디 싸게 급처합니다. [편예@	지 🥵 🖬 🗖	2018.12.02.	13
536092750 아크서바이벌 스팀 선물로 삽니다. 판매 @	sugar 🖬	2018.12.02.	29

Figure 7: Re-Posting: 중고나라

Re-Posting

Figure 8: Re-Posting: Craigslist

Data Cleaning Procedure

Table 9: Number of Observations

Data Cleaning	Number of Observation
Total number of postings	810,585
Postings with memory size	500,482
Unique postings	104,173
Sold items	116,018
With original price	248,497
Number of models	15

Back to data

Testing Serial Correlation

Figure 9: Auto Correlation: Seller ID "tam**" with A1905 Product

Table 10: Statistical Test Results

Model	Yule-Walker	Bartel's Rank test
	Average Pvalue	Average Pvalue
SM-N950	0.376	0.291
A1901	0.301	0.242
A1905	0.298	0.213
A2097	0.365	0.267
A2105	0.350	0.245
A2215	0.403	0.316
A2221	0.367	0.308
SM-A530	0.265	0.175
SM-G960	0.288	0.182
SM-G973	0.377	0.284
SM-G975	0.354	0.274
SM-G977	0.351	0.266
SM-J330	0.243	0.144
SM-N960	0.369	0.293
SM-N976	0.395	0.300

Testing Serial Correlation

Figure 10: Pvalue from Bartels' Test(week)

Figure 11: Pvalue from Bartels' Test(month)

Rank Reversal Statistic

• For 2 seller pair *i* and *k*

$$r_{ik} = rac{1}{T_{ik}} \sum_{t=1}^{T_{ik}} I(\hat{p}_{kt} > \hat{p}_{it}) \quad \text{when} \quad rac{1}{T_{ik}} \sum_{t=1}^{T_{ik}} I(\hat{p}_{it} > \hat{p}_{kt}) > 0.5$$

Table 11: Rank Reversal Statistics

Model	Rank Reversal
SM-A530	0.148
SM-G960	0.124
SM-G973	0.120
SM-G975	0.122
SM-G977	0.141
SM-J330	0.139
SM-N950	0.135
SM-N960	0.127
SM-N976	0.120
A1901	0.119
A1905	0.145
A2097	0.140
A2105	0.138
A2215	0.140
A2221	0.140

Step 1: Stochastic Monotonicity Test (Chetverikov(2020))

• The null hypothesis

 $\mathit{H}_{0}: \mathsf{For each } \mathsf{p} \in \mathit{P}, \mathit{F}_{\mathit{p}|\sigma}(\mathit{p}|\sigma) \leq \mathit{F}_{\mathit{p}|\sigma'}(\mathit{p}|\sigma') \, \mathsf{if} \, \sigma \geq \sigma' \quad \mathsf{for} \, \sigma, \sigma' \in \Sigma$

It can be written as following equation

$$E\left(1(p_i \le p) - 1(p_j \le p)\right) sign(\sigma_i - \sigma_j) K_h(\sigma_i - \sigma) K_h(\sigma_j - \sigma)) \le 0$$
(4)

• Simplifying the notation by using

$$\begin{aligned}
\mathcal{K}_{ij,h}(\sigma) &= sign(\sigma_i - \sigma_j)\mathcal{K}_h(\sigma_i - \sigma)\mathcal{K}_h(\sigma_j - \sigma), \\
k_{i,h}(\sigma) &= \sum_{j=1}^n (\mathcal{K}_{ij,h}(\sigma) - \mathcal{K}_{ji,h}(\sigma)) = 2\sum_{j=1}^n \mathcal{K}_{ij,h}(\sigma) \\
T &= \max_{(\sigma, p, h) \in \Sigma_n \times p_n \times B_n} \frac{\sum_{i=1}^n k_{i,h}(\sigma) 1(p_i \le p)}{\left(\sum_{i=1}^n k_{i,h}(\sigma)^2\right)^{1/2}}
\end{aligned}$$
(5)

• Critical values are calculated using bootstrap Testing

Robustness Check: With Only Professional Sellers

• Unit of analysis: Seller monthly average, only professional sellers (who sell more than 5 different models within a month)

τ	Estimate of δ		
	(1)	(2)	
0.05	56.57***	50.89**	
	(10.21)	(18.05)	
0.1	51.87**	49.47**	
	(17.69)	(18.89)	
0.5	261.8***	246.9***	
	(22.69)	(27.66)	
0.9	245.2***	215.1***	
	(32.44)	(32.52)	
0.95	193.5***	181.1***	
	(29.29)	(38.39)	
No. Models	14	14	
Month FE	Х	0	
No. Observations	23098	23098	

Table 12: Quantile Regression: Professional Sellers

Robustness Check: Time Gaps

• Unit of analysis: Seller monthly average price

Table 13: Quantile Regression:	Time Gaps	(hours)	between	Postings
--------------------------------	-----------	---------	---------	----------

au	Estimate of δ		
	(1)	(2)	
0.05	-0.00574***	-0.00618***	
	(0.00102)	(0.00103)	
0.1	-0.00600***	-0.00580***	
	(0.000665)	(0.000947)	
0.5	-0.00402***	-0.00472***	
	(0.000413)	(0.000404)	
0.9	-0.00180*	-0.00212*	
	(0.000710)	(0.000933)	
0.95	0.000159	-0.00129	
	(0.00222)	(0.00216)	
No. Models	14	14	
Month FE	Х	0	
No. Observations	18335	18335	

Minimum Price and Independent Case

- If both seller 1 and 2 charge the same minimum p₀, the profit of the two sellers are π₁ = σ₁p₀, π₂ = σ₂p₀
- What if seller 1 has higher minimum price? $(p_L^1 \ge p_0 = p_L^2)$
- Then $p_L^1 \in [p_0, p_2^H]$, the profit of seller 2 would be written as

$$p_L(1 - F_1(p_L))\alpha_{12} + \alpha_2 p_L = \sigma_2 p_L \ge \sigma_2 p_0$$
 (contradiction)

• Therefore, in the independent case, the minimum price is the same Model Predictions

Figure 12: Independent

Minimum Price and the Nested Case

- Assume seller 3 has the same minimum price as seller 2
- Since consumers of seller 2 compare seller 3 at the same time, seller 2 can achieve higher profit by lowering the minimum price
- \bullet Intuition: In the nested structure, the seller inside faces more elastic demand \rightarrow Lower minimum price

Figure 13: Nested

Data Cleaning Procedure

Table 14: Number of Observations

Data cleaning	Number of observation
Total number of postings	810,585
Postings with memory size	500,482
Unique postings	104,173
Sold items	116,018
With original price	248,497
Number of Models	15

Back to data

Sensitivity to Choice of Groups

• If group the sellers to 5, compare group 5 and 1 (finer grouping) gives more frequent rejection: Different minimum price

Model	3 group	5 group
iPhone X	1	1
iPhone 8	1	1
iPhone XS	1	0
iPhone XR	0	0
iPhone 11	0	1
Galaxy A8	1	0
Galaxy S9	1	1
Galaxy S10	0	0
Galaxy J3	0	1
Galaxy Note8	1	1
Galaxy Note9	0	0
Galaxy Note10	0	0

Table 15: Nestedness with Grouping

Platform

• In principle, one item for one posting

- But in practice, sellers are making duplicate posts
- The postings with the same description and characteristics are likely to have the same picture: Same product
- Characteristics: memory, condition, warranty period, seller
- Platform does not allow the use of macro or automatic re-posting
- Platform manages the trade
 - Item disappears from the list with flag of "sold" when the item is sold

Back to platform

Distribution of the Number of Re-Posting

Figure 14: Number of Re-Posting Per Day

Time Variation of the Group

Table 16: Changes in Group

		Seller group(in each month)		
		1	2	3
	1	83,676	11,298	541
(Time invariant)		87.61	11.83	0.57
Coller group	2	14,288	46,775	13,961
Seller group		19.04	62.35	18.61
	3	3,826	20,203	53,929
		4.91	25.92	69.18

Reach

Homogeneity Assumption

Price regression	Price (\$)	Log (Price)
Controls	Yes	Yes
Model FE	Yes	Yes
Month FE	Yes	Yes
N	810578	810578
R-sq.	0.939	0.948

Table 17: Price Regression

Table 18: Difference between Regression Model and the Data

Stats	Linear	Log Linear
Mean	34.62	34.28
p25	11.08	8.42
p50	24.24	20.08
p75	45.02	42.49

Price Regression

Table	19:	Price	Regr	ression
-------	-----	-------	------	---------

Regression	$\log p(1)$	$\log p(2)$	$\log p(3)$
Controls	0	0	0
Model FE	0	0	0
Month FE	0	0	0
Model # post/hr	Х	0	Х
# seller/mth		Х	0
R-sq	0.948	0.948	0.948
Ν	810578	810578	810578

Assumptions

Price Estimation Difference

Figure 15: Price Difference (1) and (2)

Homogeneity Assumptions

Price Variation Decomposition

Table 20: Price Variation Decomposition

Dep: Residuals	V	Vhole Galaxy S9		Whole		laxy S9
Regressor	Coef.	Group %R2	Coef.	Group %R2		
Seller,Model # Post/Hr	0.0020	24.86	0.0019	26.80		
Seller # Post/Hr	0.0019	73.53	0.0058	72.75		
Model # Post/Hr	-0.0004	1.61	-0.0004	0.46		
Observations	248497		32084			
Overall R2	0.0210		0.0938			

Homogeneity Assumption

Posting is the Key Component of Sales

Table 21: Sales Outcome Decomposition

Dep: Sales (0,1)	Whole	
Regressor	Coef.	Group %R2
# repeated posting daily	0.095	56.56
Price ratio(\$)	-0.064	10.84
Controls		25.45
Model share	0.572	1.89
Avg Seller Freq/Day	0.000	5.27
Observation	104169	
Overall R2	0.010	

To sales

Robustness Check: Inventory

- Inventory?: A seller with more postings may have a larger inventory
- The granular level of σ construction
- Unit of analysis: Seller unique description monthly average price, listing share

~	Estima	te of δ
7	(1)	(2)
0.05	0.110*	0.175*
	(2.20)	(2.02)
0.1	0.197*	0.309**
	(2.53)	(2.65)
0.5	0.291**	0.667***
	(2.98)	(9.40)
0.9	-0.344***	-0.113*
	(-3.65)	(-2.13)
0.95	-0.144	-0.258**
	(-1.23)	(-3.15)
No. Models	14	14
Month FE	0	0
Seller Freq	0	Х
No. Observations	221577	221577

Table 22: Quantile Regression : posting level

Robustness Check: Price Endogeneity

- Price endogeneity?: Unobserved demand factors
- Used instruments:
 - Price of other products that are posted within the same hour
 - Used normalized price (btw 0 and 1)

_	Estima	te of δ
au	(1)	(2)
0.05	0.119***	0.131***
	(16.96)	(12.36)
0.1	0.102***	0.128***
	(12.78)	(13.42)
0.5	0.0492***	0.0507***
	(13.32)	(7.71)
No. Models	14	14
Month FE	Х	0
No. Observations	12422	12422

Table 23: Quantile Regression: Price of Other Products

Robustness Check: Price Endogeneity

- Price endogeneity?: Unobserved demand factors
- Used instruments:
 - The initial price of repeated listing (with the same description)

-	Estima	te of δ
7	(1)	(2)
0.05	458.7***	459.7***
	(42.68)	(48.61)
0.1	411.3***	404.4***
	(36.58)	(53.78)
0.5	1187.5***	1184.2***
	(76.24)	(73.46)
No. Models	14	14
Month FE	Х	0
No. Observations	51028	51028

Table 24: Quantile Regression: Initial Price

Price Adjustment

Figure 16: Price Adjustment (Listing Level)

Model Testing

Summary	Step 1	Step 1 test	Step 2	Step 2 test	Result
Model	Mean p-value	Reject	Mean p-value(0.05)	Reject	Nested
iPhone X	0.233	0	0	1	1
iPhone 8	0.867	0	0	1	1
iPhone XS	0.090	0	0	1	1
iPhone XR	0.000	1	0.093	0	0
iPhone 11	0.003	0	0.133	0	0
Galaxy A8	0.047	0	0	1	1
Galaxy S9	0.347	0	0	1	1
Galaxy S10	0.723	0	0.147	0	0
Galaxy J3	0.000	1	0.8	0	0
Galaxy Note8	0.143	0	0	1	1
Galaxy Note9	0.583	0	0.24	0	0
Galaxy Note10	0.000	1	0.013	0	0

Table 25: Summary of Tests: Other Models

2nd step testing

Market Thickness and Nestedness

- The difference between the nested/ non-nested models
 - More sellers in the non-nested models
 - In the nested models, more listings are posted within one hour on average

Variable	Nest		Non nest		Diff (Non	nest-Nest)
	Mean	SD	Mean	SD	β	t
G1 frequency	0.154	0.047	0.127	0.026	-0.027***	(-92.164)
G3 frequency	0.391	0.144	0.366	0.134	-0.025***	(-22.298)
Difference (G3-G1)	0.237	0.115	0.246	0.140	0.008***	(16.248)
Sold probability	0.228	0.161	0.119	0.121	-0.109***	(-189.675)
# G1 sellers	80.730	31.803	96.006	33.471	15.275***	(116.654)
# G2 sellers	20.482	6.134	27.581	9.794	7.099***	(217.299)
# G3 sellers	12.687	6.290	16.339	6.836	3.652***	(138.633)
ave. # postings / hour	8.572	2.751	11.738	2.901	3.166***	(279.205)
Observations	122171		126326		248497	

Table 26: Nested and Non-Nested Model

Robustness Check

- Potential endogeneity concerns
- Seller with larger inventory
 - σ constructed based on listing level (e.g., "SKT Galaxy Folder G150 White")
 - Still show statistically significant positive coefficient in 5%, 10% price. Inventory story
- Price endogeneity
 - Unobserved demand shock
 - Price of other models that are posted within the same hour by the seller <a>Price Inst
 - The initial price of repeated listing (with the same description)
 Price Inst2
 - All show similar statistical significance and positive coefficients for 5%, 10% price
 - Other test results also show similar results Time lapse, with only professional sellers (who sell more than 5 different models within a month)

Re-Posting

제목	작성자	작성일	조회
536855817 [스팀] 다크사이더스3 22000원 [편예]@	직 🛃 Man 🛙	2018.12.04.	11
536806672 스팀 카스 글읍 ㄱㅈ팜 📜에 🕥	동물아신비주의 🛙	2018.12.04.	6
536725976 스팀 게임키 팝니다 (험불번들 10월자// 히됸포크스, 그렘린즈, 아메리칸트럭, 위워히어루, 올드댄스저니) [판매 @	1	2018.12.04.	29
536610442 스팀선물로 배그/gta팔아요 21000원 [편예]@	찌 응 명 🛙	2018.12.04.	13
536596883 ▶▶ 스팀게임 PC 몬스터 헌터 월드&디럭스 기프트판매합니다 ◀◀ 편예@	TOP: STEAM	2018.12.04.	11
536556188 ▶▶ 스팅게임 PC 어쎄신크리드(어쌔신크리드) 오디세이 기프트판매합니다 ◀◀ [편예]@		2018.12.04.	11
◆스퇴카일선물란대● 아베신크리드 오디세이 문스터헌터 FM2019 팀철드 등 536595398 모든스팀게임, VR판대 ● 후기2300개++ ● 지인추천, 후기이벤트 중 ● 사업자 중복 판매업체 ● [편매]@	TOXE, ETEAM	2018.12.04.	18
536487932 스팀 GTA5 + 카스글읍 판매합니다. 편 📦	지네가	2018.12.03.	24
536476829 스팀 GTA5 판매합니다 [편예]@	R - 200	2018.12.03.	26
536328063 ▶▶ 스템게임 FM2019 (Football Manager 2019) 기프트판매합니다 ◀◀ [편매]	TOXE STEAM	2018.12.03.	5
536294964 ▶▶ 스팀게임 PC 몬스터 헌터 월드&디럭스 기프트판매합니다 ◀◀ 편예@	TOXIC STEAM	2018.12.03.	9
536288535 ▶▶ 스팅게임 PC 어쎄신크리드(어쌔신크리드) 오디세이 기프트판매합니다 ◀◀ [편예]@	TOXESTEAM	2018.12.03.	5
●스팅게임성물판매● 어베신크리드 오디세이 몬스터헌터 FM2019 림열드 등 536259315 모든스팅게임, VR판매 ● 후기2300개++ ● 지인추천, 후기이벤트 중 ● 사업자 등록 판매업체 ● [판매]@	TODE STEAM	2018.12.03.	24
536113987 GTA5 + 카스글읍 스팀아이디 싸게 급처합니다. [편해]@	지 🥵 🖬 🗖	2018.12.02.	13
536092750 아크서바이벌 스팀 선물로 삽니다. 📰 🍙	sun 🔁 🖬	2018.12.02.	29

Figure 17: Re-Posting: 중고나라

Re-Posting

Figure 18: Re-Posting: Craigslist

Nested Structure with Consumer Search

Seller Heterogeneity

Table 27: Seller Shares

Stats	Mean	SD	P25	P50	P75
Prof Seller/Day,Model	0.934	0.069	0.909	0.950	0.979
Non prof Seller/Day,Model	0.123	0.182	0.036	0.066	0.125
Prof Seller/Hr	0.927	0.039	0.911	0.933	0.951
Non prof Seller/Hr	0.053	0.078	0.026	0.036	0.051

* Prof seller: The sellers who sell more than 5 cellphone models/month

Back to Data

Repeated Posting: Duplicated Posting

개동일 2020.07.24	객객시 A90 5G 128GB SM-A008N KT 점역시 A60 KT 44이트 128G8 A급 번에(무상남용) 응급 일반~역 예번 유급한 서울가능	14분전 178,000 원 다 무료
	갤럭시 A12 32GB 5M-7.125.N KT [가자동 정상에서 공기기 실사당시 상성 A12 진동신사 가능 4985 물락스 목당가명 요구함인 배출가능	14분전 139,000 원 다 무료
	객락시 A12 32GB 5M-A125N KT [가제동 정상에지 공기기 실사업지 삼성 A12 전동신사 가능 	14분전 139,000 원 다 무료
	객락시 A12 32GB SM-A125N KT 기개봉 정상에지 공기기 실사범지 삼성 A12 전통신사 가능 4명품 호박스 환자개편 요금함면 바울가는	14분전 139,000 원 다 무료
·····································	객린시 의이드4 32GB SM-A2055 9KT 경덕시 의이드4 32GB 발생 응급 전세전용 핵87개선 교급함전 보증가는	14분전 76,000 원 다 3,000

Back to data

Why it is important?

- Contribution to the literature
 - Giving empirical evidence on the theoretical predictions that were conflicted in the literature
- Practical aspect
 - Used product trading platforms in Korea suffer from the over-posting problem: Some sellers put too many postings.
 - Platform needs to understand why the sellers are over-posting
 - My analysis could be used as evidence to understand seller behavior.

Model Predictions: Nested

- Predictions from nested structure
- The entry of new sellers will not cause changes for a nested case.

	Δ Group 1 price(wk)	Δ Group 2 price(wk)	Δ Group 3 price(wk)
$\Delta \#$ seller(wk)	0.0383	0.143	0.206
	(0.101)	(0.0787)	(0.153)
Δ # sold item(wk)	-0.00952	-0.0105	-0.00183
	(0.00621)	(0.00682)	(0.00868)
∆ # Group1 seller(wk)	-0.0544	-0.149	-0.254
	(0.121)	(0.0816)	(0.178)
Const	0.0405	-0.386***	1.127***
	(0.0656)	(0.0548)	(0.101)
Model FE	0	0	0
N	450	450	450
R-sq	0.014	0.015	0.013

Table 28: Pricing after Group 1 Entrants

Model Predictions: Nested

3 $F_1(p) - F_3(p)$ is positively associated with σ_3/σ_1 if $\sigma_1 < \sigma_2 < \sigma_3$

• Instruments: Release of new model(Galaxy S21, etc.), Brand, Number of sellers in the previous week

	OLS		IV	
	p10(G3)-p10(G1)	p10(G3)-p10(G1)	p10(G3)-p10(G1)	p10(G3)-p10(G1)
$\sigma_{G_3}/\sigma_{G_1}$	2.733*	2.516*	8.241*	9.397**
	(1.184)	(1.174)	(3.508)	(3.492)
# sold		0.0271		0.0238
		(0.0146)		(0.0150)
Const	-0.418	-0.423	-16.66	-21.39*
	(4.830)	(4.825)	(9.183)	(9.210)
Model FE	Yes	Yes	Yes	Yes
N	465	465	450	450
R-sq	0.462	0.467	0.457	0.441
1stage F stat			19.37	20.11

Table 29: Concentration and Price Distribution Difference

