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Abstract

Despite the importance of intra-firm trades in theories of the firm, an empirical literature
using proxy measures has documented surprisingly little such trade. I revisit this conclusion
using economy-wide firm-level data from Korea, where related-party trades are directly ob-
servable. I show that the true prevalence and volume of the trades are much greater than
previous measures indicate. Past proxy measures that rely heavily on input-output tables
appear to dramatically underestimate the trades, capturing only 17.6% of related parties that
trade and 32.6% of their sales volume. I propose alternative methods to infer trade within
ownership networks that show substantially improved performances.
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1 Introduction

An extensive literature on the theory of the firm focuses on why some trades are moderated
within the boundary of a firm whereas others occur at arm’s length. Transaction cost economics
(Williamson, 1971, 1979; Klein, Crawford and Alchian, 1978) and the property rights approach
(Grossman and Hart, 1986; Hart and Moore, 1990) are particularly influential perspectives on this
issue. Both theories build on the premise that substantial vertical trades occur within entities.

This fundamental hypothesis has been infrequently tested; when tested, it has not fared well with
data. Information on sales and purchases of inputs within-firm, or with related parties of a firm,1

are not generally available. Hence, large-sample empirical works on the topic are scarce and are
either reliant on proxy data that require strong assumptions or are based only on a specific, small
portion of an economy.2 Moreover, these empirical studies suggest that related-party trades are
small and sparse, in a critical divergence from the theoretical literature.

Atalay, Hortaçsu and Syverson (2014)—henceforth AHS—were the first to empirically test this
issue with a large sample, and this seminal paper has served as a benchmark for subsequent
researches. In the absence of data on intra-firm trades, AHS construct a novel proxy from U.S.
establishments’ shipments data in the Commodity Flow Survey (CFS), using geographical in-
formation as well as industry-level proxies. Their baseline results show that almost 50% of
establishments with at least one related party do not sell anything to them; and even when they
do, the sales comprise only a small portion of the sellers’ economic activities. This was a sur-
prising conclusion: if there is little vertical trade, how can facilitating trade be a central driver of
integration? How can vertical integration enhance efficiency?3

In this paper, I present the first economy-wide direct measurement of related-party trades and
show that there is, in fact, substantial trade within integrated firms. I construct a novel firm-level
dataset that enables this direct observation. Exploiting a South Korean accounting requirement,
I web-scraped firms’ annual trades with each of their related parties from the side notes of all
publicly available financial statements in Korea—similar to 10-K reports in the U.S.—between
2013–2019. As firms are explicitly requested to report related-party transactions, this data shows
the trades for all firms in the economy above a set of size thresholds,4 without having to rely on
a proxy measure.

1Related parties refer to entities connected through a sufficient amount of control or ownership, such as parent
companies, subsidiaries, and so on. Exact definitions differ by study and dataset; see section 2 for more detail.

2Ramondo, Rappoport and Ruhl (2016) and Nunn and Trefler (2013) are among the strand of the literature that
studies U.S. firms’ trades with foreign subsidiaries by utilizing customs data.

3This discussion has been influential in economic policymaking. In September 2021, the Federal Trade Com-
mission (FTC) issued a statement withdrawing support for the Vertical Merger Guidelines issued jointly with the
Department of Justice in 2020. In the statement, the FTC cites AHS to argue that the guideline puts too much empha-
sis on the pro-competitive effects and efficiency gains from vertical mergers, saying: "we should be highly skeptical
that EDM [Elimination of Double Marginalization] will even be realized" as "[in] many cases, vertical integration does
not even prompt firms to provide the upstream input to its own downstream division." (FTC, 2021)

4One representative threshold is the firm’s total sales surpassing roughly $8.3 million U.S. dollars; see Section 2.
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I find that firms utilize related-party trades–in terms of both prevalence and value–substantially
more than the previous literature has documented. Almost all manufacturing firms with a re-
lated party appear to engage in related-party trades: 87.2% of the firms report either sales to or
purchases from a related party, and 77.3% report related-party sales during a fiscal year. What is
more, the trades in my data are a considerably larger part of firms’ activities than past estimates.
These results imply that vertically integrated firms actively utilize related-party trades, consistent
with a focus of the vast theoretical literature.

Subsequently, I explore why related-party trades are substantially larger in my data compared to
previous studies. I show that rather than the simple difference of country, the main driver of the
different results appears to be the data that is better suited to address the question. Specifically,
I construct a dataset where related-party trades are directly observed, whereas the lack of such
measurement has compelled previous works to infer them using proxy measures. In most cases,
researchers observe only either relatedness or trades: that is, they observe trades but not whether
the two sides are related, or see that two entities are related but not whether they trade.5

To infer internal sourcing without direct observation, researchers have long depended on a com-
bination of (i) industry-level trade patterns represented by Input-Output Tables (IOT) and (ii)
entity ownership; see, e.g., Alfaro et al. (2019), Atalay et al. (2019), Acemoglu, Johnson and Mit-
ton (2009), and Aghion, Griffith and Howitt (2006). For example, consider two entities, Ai and Aj,
with a common owner and belonging to industries i and j, respectively. The common approach
regards Ai to be purchasing from Aj only if industry i uses the output from industry j more
than some arbitrary threshold according to IOT. Unfortunately, this approach may not provide a
close approximation for the presence of trades between Ai and Aj. First, while there may exist
some IOT threshold above which Ai is likely to buy from Aj, we require data on intra-party
trade to know the value of this threshold. More generally, related-party trade patterns may differ
fundamentally from the general economy upon which the IOTs are built.

Indeed, I show that when compared with the directly observed data, the proxies’ accuracy is
heavily sensitive to the choice of cutoffs, and is generally low. A common coefficient cutoff of 1%
(e.g., AHS, Aghion, Griffith and Howitt (2006)) captures only 17.6% of related-party pairs that
trade in the Korean data, and less than one-third of the sales volume. In fact, using Korean data
together with the 1% cutoff yields a result that remarkably resembles AHS’s results. Similarly,
AHS’s robustness check that drops the IOT requirement and only utilizes geographical informa-
tion yields results that are remarkably similar to those obtained from the true Korean data. Yet
another common cutoff used in the literature of having a positive total requirements coefficient
(e.g., Alfaro et al. (2019)) is, in turn, too lenient and results in assuming almost all of the related

5In a concurrent work, Garg, Tan and Ghosh (2021) also directly measure related-party trades by utilizing a
regional dataset from a state of Karnataka in India and find larger trades compared to AHS. Relative to Garg, Tan and
Ghosh (2021), the dataset utilized in this paper can represent an entire economy that is more advanced and has strong
contractual enforcement, visualize international related-party trades in addition to domestic, and include the flow of
services as well as physical goods. Furthermore, this paper utilizes the data to construct more accurate predictive
algorithms that allow future work without access to intra-firm trade data to better predict these trades.
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parties are trading.

These results suggest that the IOT-based proxies for related-party trades, when used on their
own, appear to have generated incorrect conclusions and an inconsistency between theory and
data.6 Yet these same proxies have been central in addressing a range of questions. For ex-
ample, the proxies have been used to discern production chains within integrated firms and
subsequently answer questions such as why firms only integrate specific parts of the production
chain (Alfaro et al., 2019), what factors induce more vertical integration (Acemoglu, Johnson and
Mitton, 2009; Blyde and Molina, 2015; Alfaro et al., 2016), and also to separate out vertical from
horizontal FDI (Fajgelbaum, Grossman and Helpman, 2015; Alfaro and Charlton, 2009). Given
the importance of these questions and the sensitivity of inferring related-party trades on the
assumptions used, there is a strong need for a better way of inferring trades within ownership
structures.

In this vein, I propose alternative proxy measures that provide a more accurate inference of
related-party trades. Here, I exploit the unique opportunity to utilize the true data on related-
party trades to test and compare each method’s predictive performance. Using supervised
machine learning, I build prediction mechanisms that enable researchers to infer the existence
of related-party trades with only widely available information on firms—sizes, countries, and
industries—and the ownership links between them. Despite requiring only a small amount of
additional information other than the IOT coefficients, the proposed measures greatly improve
performance metrics such as accuracy, precision, and recall.

The rest of the paper proceeds as follows. Section 2 discusses the original data collection and
contents. Section 3 presents the related-party trade of Korean firms and discusses the under-
estimation problem of the proxy measure. Section 4 presents robustness checks, and section 5
proposes alternative proxy measures for related-party trades. Section 6 concludes.

2 Data

This paper draws on several sources to construct data. I first collect and construct the key dataset
of firm-to-firm related-party trades, then combine it with existing firm-level databases to match
firm characteristics to both sides of the trades. Here, I describe the data collection and matching.

Related-party trade data. — The primary strengths of the data used in this paper are that related-
party trades are observed directly, for a large sample of firms, and with high credibility. In most
cases, researchers either observe trades without knowing whether the trade partners are related
or observe related firms but not whether they trade. This is the first economy-wide dataset that
incorporates both components at the same time. Moreover, the reports undergo external audits
and government scrutiny, ensuring the results’ accuracy.

6Ramondo, Rappoport and Ruhl (2016) also notes that the IOT coefficients are not correlated with the observed
U.S. parent companies’ trades with foreign subsidiaries in their data.
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A South Korean accounting requirement enables this direct observation of related-party trades.7

All Korean firms satisfying a set of size thresholds (henceforth reporting firms) are required to get
an annual external audit and make the reports—analogous to 10-K reports in the U.S.—publicly
accessible.8 Crucially to this paper, in the side notes of the reports, the firms need to disclose
annual trades with each of their related parties. This section offers a brief overview of the terms
and definitions. Details can be found in Appendix A and are based on Korean financial reporting
standards (1024, 1028, 1110 K-IFRS).

I scraped and cleaned the filings from an official website maintained by a Korean government
agency (Financial Supervisory Service), comparable to the Electronic Data Gathering, Analysis, and
Retrieval database maintained by the U.S. Securities and Exchange Commission.9 I examine all
190,725 available financial reports from FY 2013–2019: after ruling out reports that were found
to be inadequate by external auditors,10 or had issues in scraping, 176,657 (92.6%) reports from
44,701 firms are used in the analysis. The main analysis utilizes only the firm-years where the
reporting firms are confirmed to have had at least one related party. After the exclusion of
singleton firms, 121,519 annual reports from 30,390 firms are used, amounting to 558,114 firm-
year-related party triples.11 While the information in this section of the financial reports has
been used in previous research in small batches through hand-scraping, this is the first paper
that utilizes it in its full scope and detail.

A related party is defined primarily by the voting rights that one firm possesses over the other.
That is, the definition of related party in this paper is based on control, and not mechanically on
the share of outstanding stocks owned. For example, if firm A owns a right to name the entire
board of directors of firm B, A and B are deemed related parties even if A owns only a small
share of B’s outstanding stocks.

Related parties in this data are composed of two categories. The first category of related parties
is within a network connected from the reporting firm with links of controlling voting power.
The related party does not have to be a direct subsidiary or a parent company. Regardless of the
number of ownership links between the reporting firm and the related party, trades between the

7The International Financial Reporting Standards (IFRS), which Korea has adopted, requires related-party trans-
actions to be reported (IAS 24). However, partly due to the complexity of creating a dataset from document-based
information, they have not received much academic attention from economists. Santioni, Schiantarelli and Strahan
(2020), which analyzes Italian firms’ related-party loans and debts, is a good example of the recent efforts to utilize
this information.

8In the last year of the data, the fiscal year 2019, the threshold requires firms to satisfy at least two of the following:
: (1) sales ≥ 8.3 million USD (originally 10 billion Korean Won), (2) assets ≥ 10m USD (12b KRW), (3) debts ≥ 5.8m
USD (7b KRW), or (4) more than 100 employees. The thresholds vary slightly over the data period; details can be
found in Appendix A.

9While 10-K filings of U.S. firms also include information regarding related-party transactions, the Korean filings
offer much more detail and a steep advantage for digitizing as they are primarily filed in table formats, not in
sentences.

10Specifically, reports are excluded if external auditors issued a disclaimer of opinion as they could not obtain suffi-
cient audit evidence from the company.

11Appendix A.5 ascertains the validity of the scraped data by comparing it with existing databases that report
similar information but with limited scopes or higher levels of aggregation.
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two are reported as long as each link satisfies one side having a controlling voting right over the
other. Second, a firm is also deemed a related party if it is directly linked to any entity in the first
category with 20% or more voting power. In a rough summary, for two firms to be deemed a
related party, up to one link between firms of 20% voting power is allowed, as long as all other
links are above 50%.12

The financial reports disclose the related parties’ names and the reporting firm’s relationship
with them. The relationships are reported in discrete categories, with information on (1) whether
a link with less than 50% voting rights is included and (2) which direction the control runs: in
other words, whether the trade partner is a subsidiary, a parent, or whether there is a lateral
component in the direction of ownership—as in ‘sibling’ or ‘uncle’ firms.

Lastly, firms report transactions separately for each of their related parties. I process the transac-
tions into four categories—sales, purchases, loans, and debts.13

The financial statements, including the side notes, go through strong government scrutiny on
top of external audits. An intentional misreporting of the information can lead to strong punish-
ments: in a widely reported case in 2018, public stock trading of Samsung Biologics was suspended
as the firm had allegedly intentionally misreported the firm’s relationship with a related party.14

Firm Information and Matching. — Aside from the transactions and relationships with related
parties, all firm-level information is matched to the scraped dataset from three databases: the
ORBIS database by Bureau van Dijk and the two largest firm-level databases in Korea, KISVALUE
and TS2000. The linked firm-level variables include industry, location, and financial information
such as total assets and sales. Each reporting firm is matched to the databases using 10-digit
firm identifiers (Business Registration Numbers) assigned by tax authorities. The related parties
of the reporting firms are matched by name, as no other identifying information is provided on
the reports. Extensive checks on the matches are undertaken to ensure accuracy.15 Some are
inevitably unmatched to firm-level information, but these are not vital to the main results, as
shown in the robustness check in Section 4.

Importantly, the ORBIS database is used to discern the set of reporting firms that have at least
one related party. This paper excludes singleton firms from the main analysis as they inherently
cannot engage in related-party trades. However, a financial report does not provide the firm’s

12Researchers use different levels of control or shareholding to define related parties, depending on available data.
Majority shareholding is common (AHS, Ramondo, Rappoport and Ruhl (2016)) but lower thresholds are also utilized,
especially with the customs data (Ruhl, 2015).

13Firms often report more detailed categories, which I re-summarize into the four during data cleaning. See
appendix A for further detail.

14WSJ, Jeong and Martin (2018), “South Korea Regulator Says Samsung BioLogics Violated Account-
ing Rules” (https://www.wsj.com/articles/south-korea-regulator-says-samsung-biologics-violated-accounting-rules-
1531407128). The case is currently on trial (April 12, 2023).

15I use a matching and cleaning process akin to what Alfaro-Urena, Manelici and Vasquez (2022) use for firm-to-
firm trades. For example, when the related party also files its own report, I examine the reports from both sides to
verify the match. See Appendix for details.
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full list of related parties, instead only displaying those that transacted with the reporting firm—
be it in sales, purchases, loans, or debts—during the fiscal year. Hence, when relying solely on
the reports, a firm that has related parties but did not actively trade with any will be marked as a
singleton and excluded from the sample. I use ORBIS to supplement this, as it provides for each
firm the list of all other firms that share the same ultimate owner.16 Throughout this paper, I take
a conservative approach and use the set of firms reported to have a related party either in ORBIS
or in the financial reports.17

Input-Output Table. — This paper utilizes IOTs to evaluate the accuracy of the previous literature’s
proxy measures and show the extent of possible biases. I use the 2015 Bank of Korea Input-
Output Table (use table) throughout the entire data period, as it is the only publicly available
version offering the most finely disaggregated sectors (381 commodities and 278 industries).
Using official concordance tables, I then link the IOT with 5-digit Korean Standard Industry
Classification (KSIC-10) codes and also with 5-digit 2017 NAICS codes.18

3 Sales and Purchases with Related Parties

Two findings emerge from Korean firms’ trades with related parties. First, most firms appear
to engage in related-party trades, and the importance of these trades is much greater than what
has been established in the literature. Second, the discrepancy from existing literature appears to
stem from a considerable underestimation inherent in the proxy measure that has been widely
used to infer related-party trades; specifically, measures based on IOT coefficients show poor
performance in predicting the trades.

3.1 Usage of Related-Party Trades by Korean Firms

While the data spans all industries, the main analysis will primarily utilize reports from manufac-
turing firms. The reasons for this are twofold. First, it enables a clearer comparison with existing
studies, a vast majority of which focus on the manufacturing sector. Second, it reduces concerns
over the possible effects of transfer pricing. While transfer pricing is monitored closely for all
industries in Korea,19 manufacturing firms have even less room to maneuver as manufactured
goods’ fair market value is easier to calculate than for services.

16The ORBIS database’s definition of related party differs in detail from my data based on Korean financial state-
ments. For example, in the ORBIS database, the minimum ownership percentage criterion is 25% while it is 20%
in the Korean data. While these minor differences may affect the sample of firms that I consider, their significance
is expected to be very small: observations with smaller than 50% ownership share are already scarce in the ORBIS
database (3.34%). While it is possible that there could be a bunching between 20% and 25% ownership shares, there
is no reason to anticipate the bunching to exist or the magnitude of it to be consequential.

17See Appendix A.4 for further details.
18As is common, concordance tables are not one-to-one for a number of industries. Where one IOT code is matched

to multiple industry codes, I split the IOT coefficients equally between industries.
19All related-party trades that show more than (i) a 5% difference from the market price or (ii) a $250,000 (300

million KRW) difference in total value from the fair market value are subject to punitive double taxation and these are
among the major items inspected in tax audits by Korean authorities.
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Table 1: Share of Sales to Related Parties

Related Party Share
of Firm Total Sales

Percentiles (%) Fraction (%) Weighted
Mean (%)50th 75th 90th 95th =0 ≥1 N

Panel 1: Korean Firms
Manufacturing Firms 2.7 17.8 57.4 90.6 22.7 2.1 33.6 54,042
All Firms 1.3 15.1 62.4 95.8 30.3 3.0 24.0 121,519

Panel 2: Literature
AHS (2014) - Main Result 0.1 7.0 37.6 69.5 49.7 1.2 16 67,500

Panel 3: IOT Requirement
Manufacturing Firms 0.8 8.7 37.4 69.7 26.6 1.1 16.9 26,077
All Firms 0.1 3.5 24.4 52.5 36.7 0.7 9.7 52,298

Panel 4: Requirements à la AHS
Manufacturing Firms 0.2 4.7 30.9 69.0 34.3 1.2 9.9 18,194
All Firms 0.0 1.9 19.1 50.5 42.7 0.8 6.4 35,955

Panel 5: Intensive Margin Only
Manufacturing Firms 7.0 31.7 82.0 99.4 13.5 3.8 38.1 26,232
All Firms 4.8 30.2 86.3 100.0 19.3 4.7 26.8 52,696

Note.—The table reports the share of firms’ sales that is sold to related parties. N consists of the firm-years where
firms have at least one related party. Due to missing firm-level information, the total N used on the table is slightly
smaller than the 125,044 available firm-level reports. The weighted mean is weighted by the size of each reporting
firm’s total sales.

Panel 1 of Table 1 reports the share of related-party sales in total firm sales. Following the
convention from AHS, I present quantiles of distributions of the shares. I first note that most
firms report positive quantities of related-party trades. 77.3% of manufacturing firms report
selling to a related party during the fiscal year, and in fact, 87.2% of the firms have either sales to
or purchases from related parties.

Moreover, the sizes of the related-party sales appear substantially greater than what the literature
has previously found. In Panel 2 of Table 1, the findings of AHS are presented as a benchmark.
The results from Korean manufacturing firms illustrate the greater importance of related-party
sales throughout the entire distribution. The 75th percentile firm in AHS sells only 7.0% of its
sales to related parties, while the corresponding number is 17.8% for Korean firms.20 In the 90th
percentile entity, the gap is even larger, where the share of related-party sales is close to 60% in
Korea but is less than 40% in AHS.

While the overall level of trades is higher, other general characteristics of the distribution are

20Note that the comparison is based on the manufacturing industries in Korea, while AHS also includes the mining,
wholesale, and select retail industries included in the CFS. Section 4 shows that using the same set of industries as
AHS simply generates almost identical results as Table 1.
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similar to the literature (AHS, Ramondo, Rappoport and Ruhl (2016)). The internal trade share
distribution is highly skewed, although to a lesser degree. Also, the share of related-party sales
is positively correlated with the selling firm’s size. The weighted mean of the shares of related-
party sales, weighted by the total sales of firms, is significantly larger than the unweighted mean
or the median. However, this paper shows much higher shares of intra-party sales overall and,
importantly, a much longer left tail: a vast majority of manufacturing firms are selling to at least
one of their related parties, even for only small amounts.

3.2 Underestimation Problem in Using Input-Output Tables to Infer Vertical Trading
between Related Parties

If the present Korean data show such a consistent and significant difference from the existing
literature, what causes this divergence? Since each paper on the topic uses a different dataset,
the apples-to-oranges problem renders a rigorous decomposition of the source of the differences
difficult. In this section, I highlight a single main driver of the disparity: the low accuracy of the
widely-used proxy for related-party trades. Specifically, using IOTs to construct proxies appears
to be responsible for much of the inaccuracy.

Confronted with a lack of data on related-party trades, IOTs are widely used to proxy for the
related parties that trade with each other. This process is rooted in Fan and Lang (2000) and
utilizes firms’ ownership and industry information which is often accessible to researchers. As-
sume firm A is in industry J and has related parties a1, a2, · · · , an, each in industries j1, j2, · · · ,
jn, respectively. The commonly used method assumes that A sells to ai only if the industries J
and ji trade significantly according to the IOT. The criteria for significant trade varies by studies.
In AHS, the criteria is more than 1% of industry J’s output being used as an intermediate input
in industry ji, but studies have utilized different cutoffs.

These criteria based on IOT cutoffs are then used to study vertical integration. As an example,
HY, a Korean firm in the Manufacture of dairy products and edible ice cakes industry, has a related
party in the same industry (IOT coef. 0.042), and another in the Manufacture of truck and motor
vehicles for transportation of goods and special purpose industry (IOT coef. 0.001).21 Based on the
industry-level trading patterns, with the 1% cutoff, one would assume that HY is selling only to
the first related party but not to the second.

While a paucity of true data has necessitated the use of such measures, using IOT coefficients in
this context inherently entails limitations. Firstly, industry codes may not be able to reflect the
firm’s entire line of businesses, which is problematic especially for multiproduct firms. Secondly,
while IOTs represent industries’ average input requirements, how firms source from related par-
ties may fundamentally differ from arm’s length sourcing. For example, data shows that HY
purchases a large amount from the related party that produces special-purpose trucks, despite

21The IOT coefficients refer to the proportions of HY’s industry’s intermediate sales that are directed to each related
party’s industry.
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such trades being a very small share of an average dairy producer’s behavior. This is because HY
stands out from its peers by operating a large fleet of small refrigerating motor vehicles which
work as roaming retail stores for the firm’s products. As these were highly specialized vehicles
that no other company was using, their production was integrated into the firm to remove holdup
costs. At the same time, the specialized nature of the product dictated the IOT coefficients to be
small.

Even when taking IOT coefficients as accurate reflections of related-party trades, without actual
data to maximize accuracy, the traditional method is inherently simple and reliant on arbitrary
components. It utilizes a single cutoff of IOT coefficients to proxy complex decisions, and more
importantly, the choice of the cutoff varies widely among studies. Studies such as Aghion,
Griffith and Howitt (2006) and Monarch, Park and Sivadasan (2017) echo AHS’s criteria, while
Alfaro and Charlton (2009), Blyde and Molina (2015), and Alfaro et al. (2019), use criteria based
on total requirement coefficients, thus taking into account indirect input use by industries as well.
Moreover, the specific cutoffs utilized in previous papers range widely from as small as zero or
0.0001 up to 0.05 in their baseline specifications.22 Additionally, papers including Acemoglu,
Johnson and Mitton (2009), Fort (2017), and Altomonte et al. (2021) do not utilize cutoffs, but
instead use the coefficients to construct vertical integration indices for each firm.

The benchmark example, AHS, ingeniously utilizes shipments and geographical data along with
the proxy method. The paper is unique in two dimensions. First, by utilizing shipment data,
it can speak to the sizes of related-party trades, while the traditional proxies mostly concentrate
on approximating the existence of trades between two related parties. Second, it exploits the
geographical locations of entities to achieve a more accurate inference.

AHS’s proxy for U.S. establishments’ related-party sales is constructed with shipment data in
the Commodity Flow Survey. For each establishment in the survey, CFS samples shipments
and records their counts, values, and destination zip codes. However, whether the shipment is
internal to the same firm is not observable. The paper, therefore, classifies a shipment as related-
party sales only if it is sent to zip codes where (i) a related party of the sending establishment
is located and (ii) that related party is in an industry that uses more than 1% of the sender’s
industry’s output, according to IOT.23 In a way, this method treats a group of entities as possible
participants of related-party trades by first using the IOT cutoff. Then, it utilizes geographical
information to distinguish the shipments that are likely sent to the group.

To demonstrate the extent of limitations that stem from utilizing the IOT cutoffs, I re-create the
main results after imposing the same data-generation process used in the previous literature.

22Papers often provide robustness checks where they use different cutoffs and show that the qualitative results
do not change. However, in a more general context, different cutoffs produce widely different predictions of which
related parties are trading. Table 3 shows how two of the most popular cutoffs perform in the present Korean related-
party trade data.

23AHS recognize that retail and wholesale industries are not represented well in the IOT, and utilizes other sup-
plemental datasets. Section 4 shows that this limitation of the IOT does not affect this paper’s results.
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Panel 3 of Table 1 reports the results from the Korean data when counting only the sales to the
related parties that satisfy the IOT cutoffs (1%).24 It is immediately apparent that the limitations
of the proxy measures take a substantial toll: the results are now much more similar to AHS,
where the use of related-party sales is almost identical to the existing literature for the 90th and
95th percentile firms. In fact, only 17.6% of reporting firm–related party pairs identified in the
full Korean dataset satisfy the IOT cutoff, representing 32.6% of the total value of trade in the
data.

Panel 4 constructs a more complete comparison with AHS by imposing two additional limitations
that pertain to the paper’s data. First, as the CFS only provides detailed destination information
for domestic sales, AHS only utilizes sales to domestic related parties. Also, only the related par-
ties connected through majority shareholdings are included, while the present study’s Korean
data also includes a small group of related parties linked with minority voting power, as de-
scribed in section 2. The two additional limitations produce smaller, but still significant changes
to the result. The results of Panel 4 now look surprisingly similar to AHS. In this way, the restric-
tions in the customary data generation process can influence how the true state of vertical trades
is perceived.

The effect of the customary data-generation process can be broken down into extensive and
intensive margins. On the one hand, utilizing the 1% IOT cutoff with a firm’s related parties will
result in underestimating the firm’s related-party trades, as only the trades with its related parties
above the cutoff will be counted (intensive margin). At the same time, researchers commonly limit
the target of their analyses to firms that have at least one related party. This means that the
1% cutoff also reduces the total sample of firms considered by reducing the scope of firms with
at least one related party (extensive margin). The firms that only have related parties in industries
below the 1% cutoff would have been excluded from the sample altogether, deemed as having
‘no (tradeable) related party.’

The extensive margin stands out when comparing the sample size between Panel 1 of Table 1
with Panels 3 and 4. While 54,042 manufacturing firm-year pairs have a related party during
the year, only 26,077 (48.2%) are confirmed to have at least one related party in an industry that
satisfies the IOT coefficient requirement. Moreover, related-party trades of only 18,194 (33.7%)
firm-years are confirmed to remain after imposing all requirements in AHS. That is, the extensive
margin limits researchers’ focus to a much smaller set of firms and their activities.

Lastly, the breakdown implies that the intensive margin is much larger than what is visible from
a simple comparison. Panel 5 of Table 1 demonstrates the limitations of IOT cutoffs when only

24In Panels 3 and 4 of Table 1, if a firm is selling to related parties that are missing industry information, I assume
that a fraction of the firm’s sales—the 4-digit reporting firm industry’s average share of sales to related parties—are to
related parties that satisfy IOT coefficient cutoffs. This is a conservative assumption in the sense that it would make the
effect of additionally required restrictions (IOT requirement, and the extra restrictions in AHS) appear smaller. Section
4 shows that alternative treatments of related parties without industry information make only marginal differences in
the results.
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Figure 1: Comparison of sample limitation on intensive and extensive margins

Note.—“ALL” refers to the distribution of firms’ true share of total sales that is directed to related parties
using all firms in the Korean data. Each horizontal location is a reporting firm, and the vertical location
shows the related-party share of the firm’s sales. “IOT” refers to a similar distribution, starting from the
right, drawn with only the firms that have at least one related party satisfying the 1% IOT cutoff required
in the literature (equivalent to Panel 3 of Table 1). As the extensive margin decreases the number of
reporting firms in the sample, the “IOT” graph is horizontally narrower. Note that a simple overlay of the
distributions is presented, so the same horizontal location does not imply the same firm.

taking the intensive margin into account. It shows what would appear when one uses only
the sample of firms that have at least one related party satisfying the IOT cutoff, but measures
their true magnitude of related-party trades. Now changes appear strikingly large—more than
a quarter of the sampled firms sell more than 30% of their sales to related parties. This is
because the now excluded set of firms, on average, have fewer related parties and therefore have
a smaller share of related-party sales. That is, when analyzing a fixed number of firms (i.e., by
removing the extensive margin), the limitations of the standard proxy measure will be much
more pronounced than for the baseline result.

One caveat is on the treatment of related parties that could not be matched with firm-level
information. The size of the extensive margin depends on the treatment of the related parties
that were not successfully matched with the industry information. The main analysis reports the
most conservative specification that would make the sum of the intensive and extensive margin
(i.e., the difference between Panels 1 and 4 of Table 1 appear the smallest). This, however, likely
overestimates the extensive margin. In Section 4, I report alternative specifications and confirm
that while the relative size of the extensive margin may change, the margin remains consistently
large and the qualitative results remain unchanged.
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4 Robustness Checks

In this section, I present two sets of robustness checks of the results presented in Section 3. The
first set of checks investigates avenues where imperfections in the present dataset could have
affected the results. Several possibilities are explored: using a different data source to define
the set of ‘firms with at least one related party’; alternative treatment of the trades with related
parties that were unsuccessfully matched to industry information; inclusion of more reporting
firms in industries that are covered in CFS; lastly, an alternative treatment of retail and wholesale
industries, which are represented with insufficient detail in input-output tables. The results
consistently support the main conclusion, with only minor discrepancies from Table 1.

In the second set of robustness checks, I also show that analyzing specific segments of the data
generates results that are in line with intuition: the results are robust to using related-party
purchases as opposed to sales, and the results are also much higher for firms in industries with
a prior belief of high usage of related-party trades.

Note that the results of robustness checks are presented primarily for the reporting firms in
manufacturing industries for the sake of conciseness unless declared otherwise. The results from
the full sample of firms in all industries are consistent with the manufacturing sample and are
listed in the Appendix Table 9.

4.1 Alternative Treatments of the Data

First, I test an alternative sample selection, by using a different method to find the set of firms
that have at least one related party. As Section 2 describes, the sample in Table 1 is a union of two
groups of firms: (i) those that have related-party transactions in the data year, or (ii) the firms
that have related parties in the ORBIS database. However, to the extent that only the firms with
some related-party transactions are represented in group (i), the inclusion of the firms only in
the group (i) may still exert upward pressure. In Panel 2 of Table 2, I only use group (ii) as the
sample. The results confirm that the concern is unfounded. In fact, related-party sales appear
even larger in this alternative specification compared to the benchmark results presented in Panel
1 of Table 2.25

The next two robustness checks examine treatments of the related parties that were not able to be
matched to industry information. As detailed in Section 2, related-party trade data from Korean
financial statements provide only limited information about the related parties. Information on
the related parties, such as industry, total sales, and cost of goods sold are matched from multiple
existing firm-level databases by the firms’ names. However, some related parties are inevitably
unmatched to firm-level information, which may affect the results. Specifically, the results of
the exercises that impose additional constraints on the data may be impacted. For example, If a

25Panel 1 of Table 2 simply provides the manufacturing firms’ results from Table 1 for a concise comparison with
the results from robustness checks.
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related party’s industry is not known, then whether it satisfies an IOT cutoff is also unavailable.26

The main analysis in Table 1 utilizes the reporting firm’s industry-level averages in place of
missing values. That is, using all related parties with industry information, I first calculate the
share si of related-party sales of firms within each 4-digit KSIC industry i that are directed to the
related parties that satisfy the IOT cutoffs. Then if a reporting firm in i sells to a related party that
is missing industry information, the share si of such sales is assumed to satisfy the IOT cutoffs.
Assuming that the share of related party sales that satisfy the cutoffs are not systematically
different between the matched and the unmatched groups, this assumption will not bias the
results of Table 1.

However, this is a strong assumption. Appendix Table 10 shows that the matched and unmatched
groups exhibit differences in both the sizes and types of trades with reporting firms. While there
is no evidence that the differences extend to the firms’ industry, a validation of this assumption
is in order.

Panels 3 and 4 of Table 2 test two assumptions on opposing ends of the spectrum and confirm
that the main results remain consistent in either case. Panel 2 is calculated assuming that all
unmatched related parties do not satisfy the IOT cutoff. In this specification, imposing proxy-
generating processes eliminate the largest share of observed related-party transactions, and there-
fore the common proxies’ limitations appear the strongest.

In Panel 4, the opposite case is tested where all unmatched related parties are assumed to satisfy
the IOT cutoff. The results do not show a large difference from the main results. This suggests
that even when the IOT cutoffs are applied just to the set of related parties with known industry
information, the limitations are already strong. Here, note that both the intensive and extensive
margins of the restrictions are affected. The intensive margin effect is smaller than in Table 1, as
the IOT cutoff now generates false negatives. On the other hand, the extensive margin is smaller
as well: now, with IOT and AHS requirements, a larger number of reporting firms have ‘at least
one tradeable related party’. Hence, the number of observations shows a less dramatic difference
between the true observation and the simulated results.

However, regardless of the specification, the key takeaways remain unchanged. First, descriptive
statistics for firms’ related-party trades remain unaffected from Table 1 and are much larger than
the existing literature’s estimates. Second, common restrictions on the data consistently assert
a substantial downward pressure on estimating the related-party sales, in both intensive and
extensive margins.

The fourth robustness check tests how the treatment of the retail and wholesale industries affects
the results. IOTs in most cases, including the one utilized in this study, do not define these indus-

26Note that the limitation discussed here does not affect the calculation of Korean firms’ related-party sales’ share
in Panel 1 of Table 1. Any possible effects are limited to the results in Panels 3 and 4 of the same table.
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Table 2: Share of Sales to Related Parties, Manufacturing Firms’ Reports Only

Related Party Share
of Firm Total Sales

Percentiles (%) Fraction (%) Weighted
Mean (%)50th 75th 90th 95th =0 ≥1 N

Panel 1: Main Result - Share at Reporting Firm Industry-Level
All trades 2.7 17.8 57.4 90.6 22.7 2.1 33.6 54,042
IOT Requirement 0.8 8.7 37.4 69.7 26.6 1.1 16.9 26,077
AHS Requirement 0.2 4.7 30.9 69.0 34.3 1.2 9.9 18,194
Intensive Margin Only 7.0 31.7 82.0 99.4 13.5 3.8 38.1 26,232

Panel 2: All Firms with a Related Party in the ORBIS Database
All trades 4.8 25.6 74.0 98.3 20.4 3.3 37.4 25,696
IOT Requirement 0.7 8.5 37.2 66.6 27.6 0.9 17.8 15,717
AHS Requirement 0.0 2.0 22.8 55.9 44.5 0.9 11.1 8,018
Intensive Margin Only 8.5 35.2 86.4 99.9 13.4 4.3 40.1 15,826

Panel 3: Assume No Related Party without Industry Information Vertically Related
All trades 2.7 17.8 57.4 90.6 22.7 2.1 33.6 54,042
IOT Requirement 0.0 2.2 22.2 54.2 54.2 0.8 8.3 26,236
AHS Requirement 0.0 2.0 23.2 61.4 52.2 1.0 5.0 18,276
Intensive Margin Only 7.0 31.7 82.0 99.4 13.5 3.8 38.1 26,232

Panel 4: Assume All Related-Parties without Industry Information Vertically Related
All trades 2.7 17.8 57.4 90.6 22.7 2.1 33.6 54,042
IOT Requirement 0.8 9.2 36.4 67.0 31.5 1.0 24.9 49,234
AHS Requirement 0.2 4.2 22.2 50.3 36.1 0.7 12.5 35,888
Intensive Margin Only 3.2 19.2 60.0 92.2 21.1 2.3 34.2 49,237

Panel 5: All Sales to RW industries as Vertically Related
All trades 2.7 17.8 57.4 90.6 22.7 2.1 33.6 54,042
IOT Requirement 1.2 10.5 41.2 73.2 24.2 1.0 21.8 30,772
AHS Requirement 0.4 6.3 34.5 73.4 29.4 1.2 11.4 21,804
Intensive Margin Only 6.3 29.1 78.2 98.8 14.1 3.5 36.9 30,950

Panel 6: Reporting Firms in All CFS industries
All trades 2.5 16.8 56.7 90.6 22.3 2.1 31.3 66,126
IOT Requirement 0.5 6.9 32.8 63.4 27.2 0.9 15.0 29,455
AHS Requirement 0.1 4.1 28.3 64.9 35.1 1.1 9.1 19,558
Intensive Margin Only 8.5 36.1 87.7 99.9 10.7 4.4 38.9 19,669

Panel 7: Related-party Purchases
All trades 3.8 17.5 41.8 62.0 23.8 0.8 28.8 53,175
IOT Requirement 0.9 8.4 24.9 40.9 26.3 0.2 14.9 23,368
AHS Requirement 0.2 4.6 18.9 35.3 37.2 0.1 7.3 18,701
Intensive Margin Only 7.7 25.5 52.8 73.4 14.1 1.4 32.2 23,483

Panel 8: Reporting Firms in Industries with Prior of High RPT Use
All trades 5.0 27.4 79.4 99.4 20.8 3.8 36.9 7,745
IOT Requirement 4.6 25.6 72.4 94.4 21.3 2.5 23.2 5,347
AHS Requirement 1.6 15.9 63.2 94.4 27.4 2.4 13.5 4,198
Intensive Margin Only 10.5 42.1 93.6 100.0 13.2 5.3 38.0 5,347

Note.—This table reports the share of firms’ sales that is sold to related parties. Sample N consists of firm-years
that have at least one related party, regardless of whether the reporting firm has any related-party transactions: due
to missing firm-level information, total N used in the table is slightly smaller than the 125,044 available firm-level
reports. The weighted mean is weighted by the size of each reporting firm’s total sales.
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tries finely enough.27 For example, Korean IOT treats the entire retail and wholesale industries
as one segment, while dividing the manufacturing industries into 234 sectors. Moreover, IOTs
show the value of intermediates used to produce the retail and wholesale services, which does
not accurately represent the flow of good and services that go through these industries.

Panel 5 of Table 2 treats all sales to related parties in the retail and wholesale industries as
satisfying the IOT criteria. Again, this is the most conservative measure that would make the
impact of imposing IOT requirements the smallest. However, the results remain qualitatively
unchanged. While the estimates with additional restrictions appear slightly larger, the differences
are small.

The last robustness check in this section fully mirrors AHS in terms of which industries’ report-
ing firms are used. AHS’s sample is from the Commodity Flow Survey (CFS), which contains
establishments in mining, manufacturing, wholesale, and select retail industries. As the main
results in Table 1 limit to manufacturing industries only, or use all industries, in Panel 6 of Table
2 I report the results using the same set of industries as in CFS. Again, this produces only very
minor differences in results.

4.2 Analysis of Distinct Sub-Segments of the Data

Panel 7 examines firms’ purchases from their related parties, instead of the sales. In particular,
this robustness check explores whether firms’ reliance on related parties is different for input
purchases compared to sales of output. For instance, while the median firm sells 2.7% of its
total sales to related parties, it may be purchasing a much higher share of its needed inputs from
them. I report Panel 7 using purchases from related parties as shares of the firms’ cost of goods
sold (COGS). The differences from the main result are minor: more than 75% of firms purchase
from their related parties, and the limitations of proxy measures substantially underestimate the
outcomes.

The final robustness check computes the share of sales for firms in industries where existing liter-
ature has underscored the importance of related-party transactions. Specifically, Panel 8 utilizes
fifteen 4-digit industries that are reviewed in Lafontaine and Slade (2007).28 Reassuringly, the re-
sults confirm prior beliefs. The share of trades is larger at every reported percentile based on the
alternative construction: the 75th and 90th percentile values are 27.4% and 79.4%, approximately
10 and 20 percentage points greater than the corresponding values in Table 1, respectively.

27Many previous studies that utilize IOTs recognize this issue as well (Fan and Lang, 2000; Acemoglu, Johnson
and Mitton, 2009). AHS utilizes information from the Annual Wholesale Trade Survey and the Annual Retail Trade
Survey to address this issue: similar data is unavailable for South Korea.

28The procedure is almost identical to a robustness check performed in AHS, with small differences in the specific
industries considered. The included industries are coal mining, petroleum refining, footwear manufacturing, soft
drink bottling, organic chemicals manufacturing, cement manufacturing, auto parts manufacturing, aircraft parts
manufacturing, iron ore mining, pulp manufacturing, and shipbuilding. The last three industries are not included in
AHS due to CFS’s scope or confidentiality. Removing them from consideration creates no qualitative change in the
results, and in fact, it makes the related-party trades appear slightly larger than is reported in Panel 8 of Table 2.
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5 Alternative Proxies from Supervised Machine Learning

5.1 Data and Methodology

Despite the common proxies’ limited performances, they have been vital for numerous researches
in vertical and horizontal integration. Such works commonly require sorting out firms within
business groups that are linked through supply chains, and the proxy has been widely applied
to this end. In this section, I propose an alternative, novel method to proxy for such firms by
utilizing supervised machine learning. Through this, I show that by using actual intra-party
trade data, researchers can obtain dramatically improved performances even with relatively off-
the-shelf methods such as random forests.

The strength of this proxy is threefold. First, this is the first measure that uses actual trades to
optimize prediction performance, and therefore it does not need to rely on arbitrary cutoffs as
in the previous measures. Second, it utilizes a substantially wider range of information than the
industry-level IOT coefficients. Lastly and simultaneously, this measure preserves the previous
proxies’ broad applicability to diverse data environments, as it only requires the most commonly
available variables to produce predictions.

It is important to note that this method is only the first step in the right direction and is not
a perfected panacea. As the data used to train the algorithm can only come from Korea, a
rigorous evaluation of the external validity of its performances in other countries is inherently
impossible. However, this method is valuable as it can easily be improved by expanding the
scope with the addition of other countries’ data. Such expansion is probable considering that
the accounting regime that this paper exploits, the IFRS, has been adopted in a broad range of
countries, including most of Europe. Moreover, even in its current form, its advantages over
traditional proxies are clear as this method is firmly rooted in actual data.

I train a random forests model (Breiman, 2001) using a set of predictors that have been discussed
in the literature as related to firms’ participation in related-party trades: IOT coefficient, firm size
measured in assets and sales, group size measured in the number of firms, industry contractibil-
ity from Rauch (1999), an indicator of whether the reporting firm has direct majority control over
the related party, firm location, and industry of both of the related firms.

In this section, I utilize a smaller subset of firms compared to Section 3 to ensure that I have
the complete list of related parties for each reporting firm. As a result, I utilize a total of 2,607
firms over the FY 2013–2019 that have 420,428 firm-year-related party triples. Among the triples,
105,367 (25.1%) report transactions in terms of sales, purchases, loans, or debts, while the rest
do not trade with the reporting firms. The main body of this section will primarily report the
algorithms trained only with manufacturing firms. This leaves 1,600 firms over the same data
period, with 197,021 firm-year-related party triples. Among the triples, 56,158 (28.5%) report
intra-party transactions. Further details of the method, construction of the data, and predictors
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Table 3: Confusion Matrix: Predicting Related-Party Trades Based on IOT

(a) IOT Cutoff ≥ 0.01

Actual

Pred.
Trade No Trade

Trade 6,058 7,115
No Trade 16,796 52,277

(b) Total Requirements > 0

Actual

Pred.
Trade No Trade

Trade 22,854 59,392
No Trade 0 0

(c) ML Algorithm from 2019 Data

Actual

Pred.
Trade No Trade

Trade 440 178
No Trade 249 1,270

Note.—Panels (a) and (b) represent confusion matrices of utilizing only a single cutoff of the chosen IOT coefficients
to discern the pairs of related parties that trade, from those that do not. Panel (a) shows the results of predictions
based on the cutoff of 1% of the seller industry’s intermediate sale going to the buyer industry. Panel (b) shows the
performances of using the total requirements coefficient having a strictly positive value. Panel (c) shows the confusion
matrix from using a random forests algorithm trained with data from 2019. Pred., or Prediction, denotes whether the
method in question predicts the pairs to trade, and Reference denotes whether the pairs trade in the true data. The
data spans all publicly traded manufacturing firms in Korea, over 2013-2019, and their related parties.

are outlined in Appendix B.

5.2 Prediction Results

Several key measures are utilized to assess prediction performances. As an illustrative example,
I first show the classification performances of two widely used methods from the literature that
each relies on a single IOT coefficient cutoff. The confusion matrices in Tables 3a and 3b divide
pairs of related parties in the data according to how well each method predicts whether the pair
trades.

Table 3a presents the confusion matrix for predictions of related-party trades using 1% of the IOT
coefficient as the cutoff. At first glance the method appears to perform relatively well; it classifies
70.9% of the related party pairs correctly, with 6,058 true positives and 52,277 true negatives.

However, this simple accuracy measure29 of 70.9% masks underlying problems. The correctly
classified observations are composed mostly of the pairs that do not trade, while not many of
the trading pairs are picked up. Out of the related-party pairs that are actually trading, this
method detects only 6,058 (26.5%); in other words, the recall rate is low.30 Moreover, the group
of pairs predicted to trade is instead composed of more pairs that actually do not. Only 6,058
(46.0%) of the pairs predicted to be trading are true positives; therefore, the precision rate of this
method is low as well.31 To summarize, attempts to study vertically trading entities through this
proxy measure would capture only a small portion of those that are actually trading, and the
constituted sample would in fact consist of more non-trading entity pairs than trading pairs.

Table 3b, using another prominent proxy from the literature, displays a different problem. When
we deem the pairs with a positive total requirements coefficient to be vertically integrated, the

29Accuracy = (True positives + True negatives) / All observations
30Recall = True positives / (True positives + False negatives)
31Precision = True positives / (True positives + False positives)
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Table 4: Prediction Performance Metrics: 2013-2019 Algorithms

Year Accuracy Precision Recall Specificity AUC PR-AUC
(1) (2) (3) (4) (5) (6) (7)

2019 0.800 0.712 0.639 0.877 0.861 0.708
2018 0.816 0.686 0.658 0.879 0.888 0.719
2017 0.770 0.678 0.547 0.876 0.848 0.701
2016 0.757 0.658 0.586 0.844 0.830 0.700
2015 0.703 0.657 0.593 0.781 0.778 0.712
2014 0.820 0.672 0.660 0.880 0.881 0.737
2013 0.757 0.648 0.599 0.837 0.826 0.730

Note.—This table reports the prediction performance metrics of algorithms created from each year’s
training data, tested on the same year’s out-of-sample testing dataset. Information from all public manu-
facturing firms in Korea and their related parties is utilized.

cutoff proves to be too lenient, not categorizing any firm-related party pairs as non-trading.32 As
such, while it detects all (27.8%) observations that are actually trading and records 100% recall,
both its accuracy and precision are very low at 27.8%.

In contrast, the random forests algorithm provides much more accurate and consistent predic-
tions. Table 3c reports the performance of an algorithm trained with the most recent year’s data,
2019, when applied to the same year’s out-of-sample testing set. The algorithm detects 62.7% of
the actual trading pairs, a substantial jump from 26.5% in Table 3a. Moreover, among the pairs
predicted to be trading, 71.1% are, in fact, doing so, again showing a sizable increase from 46.0%
and 27.8% based on the more traditional measures. This result is all the more notable, consider-
ing that the model requires only a small amount of additional information over the traditional
measures.

The improved performance is not limited to 2019 but is consistent throughout all years. Table 4
shows the out-of-sample performance of algorithms built with each year’s data. Here, a separate
algorithm is trained each year with how 80% of firms in the year’s data trade with their related
parties, then is tested on the remaining 20%. In accuracy, precision, and recall, the performance
gains over the traditional cutoffs are strong and consistent. Specificity, which measures how well
the mechanism detects the non-trading pairs, is consistently strong as well.33

What is more, the algorithms fare well in other key metrics that are widely used in the prediction
literature. Appendix Figure 3a plots the Receiver Operating Characteristic (ROC) curve from
2019. This curve plots the tradeoffs between true positive rates (recall) and false positive rates

32This threshold intends to account for indirect supply chains, and therefore is more inclusive by design. As such, it
has proven to exclude only a minimal fraction of observations in other datasets as well. Alfaro et al. (2019) reports that
in the WorldBase dataset that they utilize, 98.0% of the related parties of parent firms satisfy the total requirements
criteria.

33Specificity = True Negatives / (True Negatives + False Positives)
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(1 − speci f icity) as the threshold becomes more relaxed for declaring a pair to be trading. As
the method becomes more lenient in declaring a pair to be trading, any classification approach
detects more true positives and produces higher recall. At the same time, it is more likely to
misconstrue non-trading pairs as trading, and have higher false positive rates. Encapsulating
this curve, the AUC score calculates the Area Under the (ROC) Curve which provides a measure
of the estimated probability that a positive case, in this case a trading pair, will be ranked higher
by the algorithm than a negative case (Hosmer Jr, Lemeshow and Sturdivant, 2013). As column
(6) of Table 4 reports, the AUC scores consistently report a strong result.

When the positive cases are scarce such that there is a large class imbalance, AUC scores could
be overly optimistic (Davis and Goadrich, 2006). In this case, the PR-AUC scores are often
used to evaluate the model performances. This score calculates the area under Precision-Recall
curves, plotted in Appendix Figure 3b, which shows the tradeoff between precision and recall as
the predictive threshold changes. While the class skew is not strong in this paper, with 27.8%
trading, PR-AUC scores are also consistently strong as shown in column (7) of Table 4, sufficiently
addressing any possible concerns.

6 Conclusion

A major theoretical focus in vertical integration has been on its ability to facilitate the trade of
goods and services along production chains. While the lack of related-party trade data has made
direct observation or measurement of the trades difficult, the empirical literature has utilized
proxy measures to infer them and has found trades within related parties to be surprisingly
small.

I construct novel firm-level data on Korean firms’ related-party trades from their financial reports,
and demonstrate for the first time the true size, direction, and prevalence of these trades. In
contrast with the existing empirical literature, most firms appear to be engaged in related-party
trades and the trades are shown to assume a substantially larger share of the firms’ total sales
and purchases.

A commonly used proxy for related-party trades, based on IOTs, appears to have caused much
of this disparity between the theoretical and the empirical literatures. The traditional approach
to creating a proxy only captures the tip of the iceberg, missing a much larger share of trades
between related parties in seemingly unrelated industries. Out of all related entities that purchase
from the reporting firms, only 14.4% are in industries that satisfy the common IOT requirements,
and the sales to them represent only 31.7% of total related-party sales in the economy.

This strongly signals that (i) vertical integration involves active trading, and that (ii) related-party
trades are utilized in contexts that are tailored to specific circumstances or needs of the firms,
and do not simply follow the economy-wide trade patterns represented in input-output tables.
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Using IOTs to infer related-party trades from the network of related firms, it seems, is a perilous
approach that should be utilized with caution.

The usage of the proxy, however, was inevitable in many papers due to the lack of available data.
Given this, what should researchers do when faced with this lack of data about the true state of
the world? How can we better infer the existence and the magnitude of related-party trades from
more commonly available data sources?

To this end, I utilize the random forest method to construct predictive algorithms that researchers
can apply to their own datasets. While the method requires only a small amount of additional
publicly available data, it shows a marked improvement in performance. Moreover, I show that
variables such as group and firm sizes, as well as the firm’s control over the related party, are
important predictors of whether two related entities are trading.

It should be emphasized that the proposed method is only a first step in a better direction. It is
a demonstration of what can be achieved by leveraging actual data even with relatively simple
methods, and may benefit from integrating new data and methods. For example, while its strong
out-of-sample prediction performance is documented in various ways, the lack of data currently
prohibits verification of its performance across a diverse array of countries and contexts. By
expanding the related-party trade data that this algorithm relies on, it can be updated to account
for possible country-specific nuances. This a highly achievable goal as numerous countries share
the accounting requirements that this paper exploits.

This paper indicates that widely used proxy measures appear to have caused notable biases in
our perception of the size and prevalence of vertical trades, and presents possible alternatives to
the proxies. Then, a natural question follows: what other aspects of vertical integration could be
better understood by this improvement in the long-standing measurement problem? I intend to
pursue this in separate papers.
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A Appendix: Data

This section of the appendix provides details of the data construction process. The first half de-
scribes details of the related-party data. Subsection A.1 outline the scope of Korean firms that
report the information, and A.2 provides detailed definitions of a related party and the types of
trades that are reported. The information is based on Korean accounting regulations, which I
translated and summarize here. For the original text, see Korean International Financial Report-
ing Standards (K-IFRS), especially the section on Related-Party Disclosures (1024).

Then, the section details how the rest of the data were constructed. Subsection A.3 details how
information other than the related-party trades (e.g. firm size and industry) were matched to
each firm. Subsection A.4 explains how the main analysis finds the reporting firms that have at
least one related party.

Lastly, subsection A.5 checks the validity of the data construction process by cross-checking the
numbers with established firm-level databases. While the scope of the data in these databases
is much more limited compared to my own, the data used in this paper appear highly similar
when aggregated up to the same level available in the databases.

A.1 Related-Party Trade Data

The related-party trades are web-scraped from side notes of firms’ annual financial reports. This
section describes the sample of firms included in this data and the scraping process.

Firms34 in South Korea that satisfy a set of size thresholds are legally required to receive an

Table 5: Reporting Firm Criteria

FY start date Types of Firms Criteria*

Before 2018.11.1 Corporations

Total Assets ≥ $10m
Publicly traded or will be in the next FY
Total Assets ≥ $5.8m and Total Debts ≥ $5.8m
Total Assets ≥ $5.8m and Employees ≥ 300

On 2018.11.1 – Corporations**

Total Assets ≥ $41.6m
Total Sales ≥ $41.6m

Satisfies 2 of


Total Assets ≥ $10m
Total Debts ≥ $5.8m
Total Sales ≥ $8.3m

* All monetary units are converted to USD from the original Korean Won using a rough exchange rate of 1200 Won = 1 USD.
** Also includes limited companies from FY starting on 2019.11.1 and after.

34More specifically, a type of firm, corporations, are subject to this reporting requirement during this paper’s data
period. As corporations are consistently more than 94% of all firms in Korea during the same period, I use the terms
interchangeably.
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annual external audit and publicly disclose the reports. The thresholds have undergone a small
update during the data period. While the details of which are outlined Table 5, data from the only
period affected by this change, the fiscal year 2019, does not demonstrate a material difference
from other years.

A.2 Definition of Terms

A.2.1 Related Parties

On the ‘Related-Party Trade’ section of the side notes to the financial reports, firms disclose the
names and relationships of the related parties that are involved in trades with the reporting firm.
Specifically, the reporting firms are required to disclose relationships with the related parties in
the following seven categories.

(1) Parent firm (holding a majority voting power)
(2) Parent firm (holding a minority voting power, or a joint parent firm)
(3) Subsidiary (holding a majority voting power)
(4) Affiliate (holding a majority voting power)
(5) Jointly owned subsidiary
(6) Board members of reporting firm or its parent firm
(7) All other related parties (‘sibling’/‘cousin’ firms, etc.)

In practice, firms often report the relationships using much more finely defined categories. In
that case, I re-categorize them into the seven categories.

A.2.2 Variables Reported (“Trades”)

The firms are required to disclose the following categories of transactions with their related par-
ties. From the data, all transactions corresponding to sales, purchases, debts, and loans are taken
and aggregated into the correct category. Firms often report transactions using more granu-
lar categories, which I re-summarize into the four categories. Note that the provision of debt
guarantees or collateral is excluded from the data used in the main analysis.

(1) Sales and purchase of goods (final and intermediate)
(2) Sales and purchase of real estate or other assets
(3) Sales and purchase of services
(4) Lease
(5) R & D
(6) License
(7) Loans, debts and other investment
(8) Provision of loan guarantee / collateral
(9) Uncompleted contract
(10) Provision of debt payment on behalf of the other

25



A.3 Matching Firm-level Information to Related-Party Trade Data

The related-party trade data from Korea provides a unique firm-level 10-digit identifier (Business
Registration Number) for the reporting firm. Firm-level information is easily matched to the
reporting firms, using the identifier, from three existing firm-level databases: KISVALUE, TS2000,
and ORBIS. KISVALUE and TS2000 are the two largest firm-level databases in Korea. The two
databases, when combined, contain all reporting firms in my related-party trade sample. The
ORBIS database is compiled by Bureau Van Dijk, and includes a large subset from the related-
party trade dataset as well as a larger number of firms outside of South Korea.

Values from the three databases are consistent but often display minor differences. In case of a
difference in numerical accounting data (e.g., total sales, cost of goods sold, etc), I assign priority
to the information from TS2000, KISVALUE, then ORBIS, following the number of reporting firms
that can be matched with each database. When the databases report different industry codes for
the firms, (i) the most detailed industry information is used, and (ii) if the industry codes display
the same level of details or digits, the databases are given the same priority as the accounting
data. Note that information from separate financial statements (at the individual firm level) is
used instead of the consolidated financial statements, which report combined information of
parent companies with their subsidiaries.

On the other hand, for the related parties that are reported, the only available information is their
firm names. The related parties are then matched to data in existing databases by the names. The
firm names are cleaned, then matched with 10-digit identifiers by (i) historical firm name data
from the DART website as well as from existing domestic databases, then in case the firm names
cannot be matched to the domestic 10-digit identifiers, it is then matched by (ii) firm names in
the ORBIS database.

The name-matching process goes through extensive checks, and conservative criteria are used
to check the validity of matching in order to ensure accuracy. Here I summarize the key steps
taken. The key is to use a dual-reporting feature: if firm A reports trades with firm B that is
large enough, firm B would also be reporting trades with firm A in the same year. Then, the
trades reported by firm A should be equal to the trade reported by firm B. In the following, firm
A denotes the original reporting firm and firm B denotes one of A’s related parties.

1. If a unique firm identifier is matched with firm B,

(a) If there is an annual financial report from the matched firm identifier in the given year,
the match is regarded correct only if B’s financial report also lists firm A as its related
party.

(b) If there is no annual financial report from the matched firm identifier in the given year,
then the match is assumed as a correct match.

2. If multiple firm identifiers are matched with firm B’s name,
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(a) If there is a unique firm identifier that has an annual financial report in the same year
that lists firm A as its related party, then that firm identifier is regarded as a correct
match.

(b) If there are multiple identifiers that have annual financial reports in the same year that
lists firm A as its related party, or if there is no such 10-K report, then no firm identifier
is deemed a correct match.

3. After (1) and (2), if firm B is not matched with an existing firm identifier from Korea, firm
B’s name is checked against the ORBIS database. Information from the ORBIS database is
deemed correct only if it is a unique match with a firm identifier.

After the matching process, 52.1% of the observations are matched with information on the
related parties.

The related-party trade numbers go through a similar verification process. The process is largely
in line with the data verification process outlined in the Data Appendix of Alfaro-Urena, Manelici
and Vasquez (2022).

A.4 Finding Firms with at Least One Related Party

The analysis of the paper excludes singleton firms, or firms without any related party, from
the sample as they inherently cannot engage in related-party trades. However, the financial
reports do not provide a firm’s full list of related parties, instead only displaying those that have
transacted with the reporting firm—be it in sales, purchases, loans, or debts—during the fiscal
year. Hence, when relying solely on the reports, a firm that has related parties but is not actively
trading with any will be marked as a singleton and excluded from the sample.

I use the ORBIS database to supplement the 10-K reports, as it provides for each firm the list of
all other firms in the database that share the same ultimate owner. Throughout this paper, I take
a conservative approach and use the set of firms reported to have a related party either in ORBIS
or in the financial reports.

Two caveats exist in the process. First, the ORBIS database’s definition of a related party differs in
detail from my data based on Korean financial statements. For example, in the ORBIS database,
the minimum ownership percentage criterion is 25% while it is 20% in the Korean data. While
these minor differences may affect the sample of firms that I consider, their significance is ex-
pected to be very small: observations with smaller than 50% ownership share are already scarce
in the ORBIS database (3.34%). While it is possible that there could be a bunching between 20%
and 25% ownership shares, there is no reason to anticipate the bunching to exist or the magnitude
of it to be consequential.

Second, As the ORBIS database only provides the most recent ownership information for each
firm, the set of firms that have related parties in ORBIS in 2019 are utilized throughout the entire
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data period. I contend that any possible biases from this limitation are not significant to the main
results in Table 1. First, any bias will act to include singleton firms in the sample that I consider,
more so for the earlier years of the data, and therefore result in underestimating firms’ related-
party trades. As the main finding of the paper is that these trades are larger and more prevalent
than previously thought, this paper’s results will only be stronger without the possible biases.
Second, the possible biases are likely small, as the attrition rate is small: using a sub-sample of
all public firms in Korea, for which the complete list of firms’ related parties are observable, I
confirm that 91.3% of firms with a related party still do after 3 years.

A.5 Comparison of data with existing databases

This section provides a test of the validity of the scraped related-party trade data’s accuracy
by comparing the results with two existing databases. In general related-party information has
rarely been utilized as it is listed only in the side notes of financial statements. The rare exceptions
are KISVALUE and TS2000, the two largest firm-level databases in Korea, which each contain a
part of the data. Here, I show that a comparison of the scraped data with existing databases
yields almost identical results.

KISVALUE provides the related-party data aggregated at the reporting firm’s level only. Even
though trades with individual related parties are not visible, the database includes a large subset
of firms in my related-party trade data: it includes 19,464 firms, compared to the 30,390 firms
in my own. In Table 6 I report the comparison of related-party trades for the sample of firms
that are included in KISVALUE and the scraped data at the same time. The results confirm the
accuracy of the scraping process. The difference between my data and KISVALUE is minuscule.
Moreover, the related-party trades appear slightly larger in the existing database, suggesting that
the results in Table 1 are not overestimating, if underestimating slightly.

It is worth noting that KISVALUE reports NA values for the firms that do not engage in any
related-party trades, as well as for some firms that post zero trades. Therefore, by utilizing only
the firms with non-NA related-party trade values in KISVALUE, as in Panel 2, the numbers may
overrepresent the firms with some level of related-party transactions, be it sales, purchases, loans,
or debts. In Panel 1, I mitigate the effect by including more firms. First, using my scraped data I
identify the firms that have no related-party trades (but have all NA values in KISVALUE), then
include them in KISVALUE samples as having zero related-party trades.

In contrast, TS2000 provides the data defined at the most similar levels of detail to my own,
but for a much narrower scope of firms and with different variable definitions. The database
reports the trades for 2,284 public firms in Korea, compared to the 30,390 firms used in the
main paper. Moreover, the reporting firms in this sample are significantly larger: the median
total sales of firms in this sample is roughly $61 million USD, while for the full sample it is $16
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million USD.35 Lastly, TS2000 divides the trades differently: the sales and purchases are divided
into those related to the firm’s core business operations, and those that are not (operating vs.
non-operating income and cost), and others, a category assigned when the database could not
determine whether a reported transaction is about the core operation or not. The problem is, this
others category was defined too liberally: the numbers are too large, and it does not distinguish
sales from purchases, simply listing the sum of reported numbers.

Panel 3 of Table 6 compares the related-party trades reported by TS2000 with the scraped data.
To account for the others category, here the numbers reported are the sum of sales and purchases,
as a share of each firm’s total sales.

Table 6: Share of Sales to Related Parties, Comparison with KISVALUE

Related Party Share
of Firm Total Sales

Percentiles (%) Fraction (%) Weighted
Mean (%)50th 75th 90th 95th =0 ≥1 N

Panel 1: All firms with RPT in KISVALUE: Sales
Scraped - All Industry 1.4 13.8 54.5 89.7 29.2 2.4 27.0 85,776
KISVALUE - All Industry 1.6 14.3 55.5 90.0 26.9 2.0 26.2 85,850
Scraped - Manufacturing 2.6 16.6 52.5 85.4 22.0 1.8 33.3 41,053
KISVALUE - Manufacturing 2.9 17.0 52.7 84.8 19.7 1.4 32.9 41,077

Panel 2: All firms with RPT in KISVALUE: Sales
Scraped - All Industry 2.8 18.4 63.3 94.4 18.4 2.8 27.8 74,456
KISVALUE - All Industry 3.1 19.0 64.2 94.2 15.7 2.3 27.0 74,530
Scraped - Manufacturing 4.0 19.9 58.0 89.8 13.0 2.1 34.2 36,793
KISVALUE - Manufacturing 4.3 20.2 57.7 89.4 10.4 1.6 33.5 36,817

Panel 3: All firms with RPT in TS: Sales + Purchases
Scraped - All Industry 13.5 40.8 81.6 101.0 4.8 5.6 48.9 11,768
TS2000 - All Industry 12.2 39.0 81.2 101.6 11.9 5.8 42.0 12,440
Scraped - Manufacturing 14.4 39.5 73.8 96.4 4.7 4.0 58.0 7,717
TS2000 - Manufacturing 13.1 37.8 70.9 94.6 12.5 3.8 56.1 7,957

Note.—The table compares the related-party trades reported in KISVALUE with the scraped and cleaned data used
in this paper.

35The median total sales of reporting firms in KISVALUE’s related-party trade sample is $27 million USD.
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B Constructing New Method to Proxy for RPT with Machine Learning

In this section, I provide more details on the construction of the new proxy in Section 5. In section
5, I propose an alternative proxy by utilizing supervised machine learning. This is the first such
measure that is optimized based on how it performs to predict actual intra-party trades. Hence it
is able to (i) move away from the arbitrary cutoffs used in the previous measures, and (ii) utilize
a wider range of information. Here, the goal is to come up with an algorithm that only requires
commonly available data to produce predictions on which pairs of related parties are trading and
which are not, so that it can be used in more standard data environments.

B.1 Methodology

Supervised machine learning offers a number of advantages for this task. First, it is best suited
to out-of-sample predictions, compared to the more traditional econometric toolbox that focuses
on the in-sample fit of a model. As the desired end-product is an algorithm that researchers
can apply to their own dataset, I opt for machine learning to optimize performance and avoid
overfitting to my own data. Second, the models are flexible as they allow for a large number of
predictors as well as non-monotonic relationships between the outcome and the predictor (Athey
and Imbens, 2019). Lastly, when the set of potential predictors is large and the key predictors
are not clearly identified, researchers can establish the relative importance of each predictor
(Breiman, 2001).36

Specifically, I apply the random forests approach to generate predictive algorithms classifying
pairs of related parties as either trading or not trading. As the approach is widely in use, I only
provide a brief description. The random forests approach estimates an individual decision tree
by sequentially splitting the data based on optimized cutoffs of the most informative predictors.
To illustrate a simple example, if the IOT coefficient is the only predictor, a tree would find a
cutoff (or cutoffs) of the coefficient that best divides the data into groups of trading pairs and
non-trading pairs. In practice, each tree is drawn from many predictors and cutoffs. A random
forest aggregates a multitude of decision trees that are created by bootstrapping different subsets
of both the data and the predictors. This aggregation aims to address the limitations of relying
on a single tree, such as the volatility of the results and an overdependence on the variables used
in early splits.

In order to form a prediction on which pairs of related parties are trading and which are not, I
use a variety of possible predictors—referred to as ‘features’ in the machine learning literature—
derived from related literature. The predictors include a range of basic industry, firm, and group-
level characteristics; for a complete list, see Table 8.

36Machine learning is increasingly being used by economists in the academic domain. See, for example, Kleinberg
et al. (2018), Fuster et al. (2022), and Li et al. (2021). Athey and Imbens (2019) and Mullainathan and Spiess (2017) pro-
vide excellent reviews of machine learning applications for economists. Efron (2020) presents a succinct comparison
between predictive algorithms and standard regression techniques.
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Table 7: List of Predictors and Related Literature

Category Predictors

1. IOT coefficients Direct and total requirements, share of sales to RP industry
(Atalay et al., 2019; Alfaro et al., 2019)

2. Firms’ basic information Size (assets, sales) of firms
(Ramondo, Rappoport and Ruhl, 2016)

3. Group’s basic information Size of group (number of firms)
(Ramondo, Rappoport and Ruhl, 2016)

4. Industry contractibility Index derived from Rauch (1999)
(Rauch, 1999; Nunn, 2007)

5. Control over RP Dummy for whether RP is a subsidiary
(Antràs and Chor, 2013)

6. Location of RP Dummy for whether RP is a domestic firm
(Antras and Foley, 2015)

7. Industries of firms 2-digit KSIC (3-digit NAICS) codes
(Lafontaine and Slade (2007), AHS)

Note.—This table provides the list of predictors used in Section 5, and examples of the papers that discuss relevance
between the predictor and related-party trades.

B.2 Choice of Features

The first set of features involves both parties’ industry-specific characteristics, including (i) IOT
coefficients, (ii) a measure of industry contractibility, and (iii) industry dummies. IOT coefficients
reflect technologically determined intermediate input needs for each industry, and have been
most widely used to infer related-party trades. I include three different types of coefficients that
have each been utilized in the literature: the direct requirements coefficients, total requirements
coefficients, and the share of intermediate sales directed to a specific industry.37 Also, I include
a measure of how contractible an industry’s output is—or more specifically, how relationship-
specific it is—to account for potential holdup problems.38 Past studies have also pointed to
specific industries as more likely participants in intra-party trades. To account for this, in some
specifications I also include dummy variables indicating the industry code.39 of both firms

37Direct requirements show the share of industry i’s intermediate inputs that come directly from another industry
j, while total requirements represent both direct and indirect inputs from j. The last coefficient, the share of industry
i’ intermediate sales directed to j, is utilized in AHS.

38I use a measure of relationship-specificity developed and used in Rauch (1999). This method classifies commodi-
ties by whether they are sold on organized exchanges, have a reference price in a trade publication, or neither. By
reflecting the depth of the potential market for the commodity, the degree of potential holdup problems is inferred.
Following Nunn (2007), I create a dummy variable indicating whether a good falls into the first two categories. Rauch’s
classification that was revised in 2007 groups goods into 1,189 SITC Rev.2 industries. I use official concordance tables
to match them with appropriate KSIC or NAICS codes of each firm.

39I use 3-digit NAICS and 2-digit KSIC codes in order to maintain a similar level of disaggregation.
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The second set of predictors measures the size of firms and groups. Both AHS and Ramondo,
Rappoport and Ruhl (2016) report that a firm is more likely to engage in related-party trades
when that firm is larger and when it belongs to a larger group. I use firms’ total assets and total
sales, and the number of firms within a group as possible predictors. The relatively parsimonious
nature of the variables in this set have an added benefit for future use, as total assets and sales
are often the most widely available information in firm-level databases.40

The last set of predictors is loosely defined as a firm’s ‘control’ over the related-party in trade.
I include an indicator of whether the reporting firm controls a majority of the related party’s
voting power; in other words, whether the related party is a subsidiary of the firm. In contrast,
control over the firm’s affiliates with minority vote-holding, or other related parties such as par-
ent companies, parent companies’ other subsidiaries, etc. are deemed weaker and are therefore
distinguished with this dummy variable. In a similar vein, I also include an indicator showing
whether the related party is domestic or foreign. This partly reflects the firm’s possible control
and supervision over the affiliate’s activities (Antras and Foley, 2015); at the same time, it is
expected to pick up differences in domestic vertical ownership and FDI.

Compared to Section 3, a smaller subset of firms is utilized here to ensure that for each firm
there is a full list of its related parties. For all publicly traded firms in Korea, TS2000 reports
the list of their related parties. I merge the primary related-party trade dataset with the list from
TS2000, keeping only those firms that appear in both datasets. The consolidated data contains the
complete list of all public firms’ related parties, as well as how much each firm trades with them.
As a result, I utilize a total of 2,607 firms over 2013–2019 that have 420,428 firm-year-related party
triples. Among the triples, 105,367 (25.1%) report transactions in terms of either sales, purchases,
loans, or debts, while the rest do not trade with the reporting firms. The main body of this
section will primarily report the algorithms trained with the firms in the manufacturing sector
only. This leaves 1,600 firms over the same data period, with 197,021 firm-year-related party
triples. Among the triples, 56,158 (28.5%) report intra-party transactions.

The data for each year is then randomly divided into training and testing sets according to an
80:20 split at the firm level. The principle is to have no overlapping information between the two
sets: thus, no reporting firm will appear in the same year’s training set and testing set. I train
each year’s prediction algorithm separately using the R package caret.

B.3 Alternative Measures of Prediction Performances

In section 5, I report the algorithm’s performances mainly using three measures: accuracy, pre-
cision, and recall. In this section, I show that the algorithms fare well in other key metrics that

40Total assets and sales are matched to firms from existing databases, following the process described in section 2.
However, not all related parties in the data are successfully matched with assets and sales information. These cases
are primarily driven by firms that are too small and thus not included in the databases at hand. Therefore, missing
values are assigned 0, and a dummy variable indicating imputation is added.
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Figure 2: Importance of Top Variables, 2019 Algorithm
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are widely used in the prediction literature. Appendix Figure 3a plots the Receiver Operating
Characteristic (ROC) curve from 2019. This curve plots the tradeoffs between true positive rates
(recall) and false positive rates (1− speci f icity) as the threshold becomes more relaxed for declar-
ing a pair to be trading. As the method becomes more lenient in declaring a pair to be trading,
any classification approach detects more true positives and produces higher recall. At the same
time, it is more likely to misconstrue non-trading pairs as trading, and have higher false posi-
tive rates. Encapsulating this curve, the AUC score calculates the Area Under the (ROC) Curve
which provides a measure of the estimated probability that a positive case, in this case a trading
pair, will be ranked higher by the algorithm than a negative case (Hosmer Jr, Lemeshow and
Sturdivant, 2013). As column (6) of Table 3 reports, the AUC scores consistently report a strong
result.

When the positive cases are scarce such that there is a large class imbalance, AUC scores could
be overly optimistic (Davis and Goadrich, 2006). In this case, the PR-AUC scores are often
used to evaluate the model performances. This score calculates the area under Precision-Recall
curves, plotted in Appendix Figure 3b, which shows the tradeoff between precision and recall as
the predictive threshold changes. While the class skew is not strong in this paper, with 27.8%
trading, that PR-AUC scores are consistently strong sufficiently addresses any possible concerns.

B.4 Relative Variable Importances

In addition to reporting algorithm performance, I report the top 8 predictors in terms of variable
importance in Figure 2. The importance is calculated based on how information from each
variable decreases mean node impurity: this is closely analogous to the residual sum of squares
in regression. The most important variable is given the index value of 100, while other variables
are given values in relative terms to it. The most notable trait from the variable importance plot is
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the large importance of group size. While Ramondo, Rappoport and Ruhl (2016) has shown that
group size could be a significant predictor of related-party trades, that its relative importance far
surpasses the other features is surprising.

Moreover, the IOT coefficients, although important, nevertheless appear far from the most deci-
sive predictors. Other variables that represent reporting firms’ control over the related party are
shown to be more important, such as whether a majority of the related party’s voting rights are
owned by the firm (Subsdidiary) or whether the related party is located domestically. Then follow
the sizes of both firms in terms of total assets, and only lastly the input-output coefficients.
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C Supplementary Tables and Figures

C.1 Figures

Figure 3: Performance of Algorithm based on 2019 Data

(a) ROC Curve
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(b) PR Curve
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C.2 Tables

Table 8: List of Industries with Prior of High RPT Use from Lafontaine and Slade (2007)

KSIC Codes Industry Names

0510 Mining of coal and lignite
1120 Manufacture of ice and non-alcoholic beverages; production of mineral waters
1521 Manufacture of footwear
1921 Petroleum refineries
2011 Manufacture of basic organic chemicals
2331 Manufacture of cement, lime and plaster
3031 Manufacture of parts and accessories for motor engines (new products)
3032 Manufacture of parts and accessories for motor vehicle body (new products)
3033 Manufacture of power transmission devices and electrical and electronic equipment

for motor vehicles (new products)
3039 Manufacture of other parts and accessories for motor vehicles (new products)
3040 Manufacture of parts and accessories for motor vehicles (remanufacturing products)
3132 Manufacture of engines and parts for aircraft
0610 Mining of iron ores
1711 Manufacture of pulp
3111 Building of ships and floating structures

Note.—The original list of industries are from Lafontaine and Slade (2007), and this table outlines the corresponding
4-digit KSIC industries and their codes used in this paper.
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Table 9: Share of Sales to Related Parties, Firms in All Industries

Related Party Share
of Firm Total Sales

Percentiles (%) Fraction (%) Weighted
Mean (%)50th 75th 90th 95th =0 ≥1 N

Panel 1: Main Result - Share at Reporting Firm Industry-Level
All trades 1.3 15.1 62.4 95.8 30.3 3.0 24.0 121,519
IOT Requirement 0.1 3.5 24.4 52.5 36.7 0.7 9.7 52,298
AHS Requirement 0.0 1.9 19.1 50.5 42.7 0.8 6.4 35,955
Intensive Margin Only 4.8 30.2 86.3 100.0 19.3 4.7 6.8 52,696

Panel 2: All Firms with a Related Party in the ORBIS Database
All trades 2.2 20.9 74.3 99.1 28.2 3.9 25.6 62,147
IOT Requirement 0.0 3.2 22.7 51.2 37.0 0.6 10.1 33,354
AHS Requirement 0.0 0.7 12.6 42.4 50.1 0.6 6.5 18,087
Intensive Margin Only 5.3 31.6 86.8 100.0 19.3 4.9 27.7 33,649

Panel 3: No Related Party without Industry Information Vertically Related
All trades 1.3 15.1 62.4 95.8 30.3 3.0 24.0 121,519
IOT Requirement 0.0 0.3 10.9 36.1 66.3 0.5 5.3 52,761
AHS Requirement 0.0 0.4 11.9 40.8 63.8 0.6 3.7 36,197
Intensive Margin Only 4.8 30.2 86.3 100.0 19.3 4.7 6.8 52,696

Panel 4: All Related-Parties without Industry Information Vertically Related
All trades 1.3 15.1 62.4 95.8 30.3 3.0 24.0 121,519
IOT Requirement 0.1 5.3 31.5 65.9 40.5 1.3 15.0 107,028
AHS Requirement 0.0 2.5 19.3 49.4 43.4 0.8 8.1 78,090
Intensive Margin Only 1.7 17.1 66.4 97.1 28.1 3.2 24.5 107,017

Panel 5: All Sales to RW industries as Vertically Related
All trades 1.3 15.1 62.4 95.8 30.3 3.0 24.0 121,519
IOT Requirement 0.2 5.2 28.3 57.9 32.2 0.8 12.9 65,461
AHS Requirement 0.1 3.4 23.4 56.3 35.3 0.9 7.5 46,205
Intensive Margin Only 4.1 26.7 81.6 99.8 19.4 4.2 25.9 65,909

Panel 6: Reporting Firms in All CFS industries
All trades 2.5 16.8 56.7 90.6 22.3 2.1 31.3 66,126
IOT Requirement 0.5 6.9 32.8 63.4 27.2 0.9 15.0 29,455
AHS Requirement 0.1 4.1 28.3 64.9 35.1 1.1 9.1 19,558
Intensive Margin Only 6.6 30.2 80.6 99.2 13.2 3.6 36.2 29,661

Panel 7: Related-party Purchases
All trades 3.1 20.0 62.3 95.5 26.5 4.2 27.0 105,563
IOT Requirement 0.2 5.5 21.5 39.7 33.2 0.5 11.2 37,944
AHS Requirement 0.0 3.0 16.0 33.1 41.6 0.5 5.9 29,928
Intensive Margin Only 7.7 29.9 71.1 99.7 14.6 4.9 30.6 38,110

Panel 8: Reporting Firms in Industries with Prior of High RPT Use
All trades 5.0 27.4 79.2 99.4 20.8 3.7 36.9 7,767
IOT Requirement 4.6 25.6 72.4 94.4 21.3 2.5 23.2 5,347
AHS Requirement 1.6 15.9 63.2 94.4 27.3 2.4 13.5 4,203
Intensive Margin Only 10.5 42.1 93.6 100.0 13.2 5.3 38.0 5,347

Note.—The table reports the share of firms’ sales that is sold to related parties. Sample N consists of firm-years
that have at least one related party, regardless of whether the reporting firm has any related-party transactions: due
to missing firm-level information, total N used in the table is slightly smaller than the 125,044 available firm-level
reports. The weighted mean is weighted by the size of each reporting firm’s total sales.
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Table 10: Comparison of Related-Parties with vs. without Industry Information

RPT Info Share>0 q25 q50 q75 q100 Mean

Sale
Yes 0.642 0 20.0 548.0 247,063.0 3,211.6
No 0.538 0 1.8 281.3 150,477.3 1,850.5

Purchase
Yes 0.614 0 15.1 540.5 190,664.2 2,788.5
No 0.495 0 0 255.0 126,707.5 1,608.5

Note.—This table compares trades with related parties that are (i) successfully matched to industries and
(ii) not, using pooled observation throughout 2013-2019. For each of the two groups, Share>0 reports the
share of firm-year-related party triples that have a positive amount of each type of trade. qn reports the
size of the trades for the n-th percentile. As q25 is already at the smallest possible value of zero, q0 is
omitted from the table. Columns 4-8 use Millions of Korean Wons as units. The table reports the numbers
after truncating 0.5% of observations from each end.

Table 11: Performance: Predict 2019 Intra-party Trades

Year Accuracy Precision Recall Specificity
(1) (2) (3) (4) (5)

2019 0.797 0.711 0.627 0.878
2018 0.906 0.828 0.807 0.940
2017 0.883 0.806 0.722 0.939
2016 0.859 0.758 0.687 0.921
2015 0.846 0.740 0.633 0.922
2014 0.825 0.709 0.602 0.908
2013 0.825 0.709 0.552 0.921

Note.—Metrics for 2013–2018 represent the performances of each year’s algorithms in predicting intra-
party trades of 2019. In doing so, I utilize all firms in 2019 that have not been used in the training sets of
each year: in this way, there are no overlaps between training and testing datasets. The metrics for 2019
represent the out-of-sample performances of the 2019 algorithm.

Table 12: Performance: Predict 2013 Intra-party Trades

Year Accuracy Precision Recall Specificity
(1) (2) (3) (4) (5)

2019 0.825 0.692 0.708 0.873
2018 0.825 0.696 0.733 0.864
2017 0.845 0.712 0.756 0.880
2016 0.842 0.723 0.763 0.876
2015 0.871 0.776 0.774 0.910
2014 0.887 0.801 0.830 0.911
2013 0.768 0.668 0.604 0.850

Note.—Metrics for 2013–2018 represent the performances of each year’s algorithms in predicting intra-party trades of
2019. In doing so, I utilize all firms in 2019 that have not been used in the training sets of each year: in this way, there
are no overlaps between training and testing datasets. The metrics for 2019 represent the out-of-sample performances
of the 2019 algorithm.
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Table 13: Out-of-Sample Confusion Matrix, ML Algorithm from 2019 Data

Reference

Prediction
Trade No Trade

Trade 432 176
No Trade 257 1,272

Table 14: Prediction Performance Metrics: 2013-2019 Algorithms (target: AUC)

Year Accuracy Precision Recall Specificity AUC PR-AUC
(1) (2) (3) (4) (5) (6) (7)

2019 0.797 0.711 0.627 0.878 0.861 0.708
2018 0.816 0.694 0.639 0.887 0.889 0.719
2017 0.770 0.678 0.547 0.876 0.848 0.699
2016 0.755 0.663 0.564 0.853 0.829 0.695
2015 0.705 0.660 0.595 0.783 0.779 0.712
2014 0.820 0.672 0.660 0.880 0.881 0.734
2013 0.768 0.668 0.604 0.850 0.829 0.730

Note.—This table reports prediction performance metrics of algorithms created from each year’s training data, tested
on the same year’s out-of-sample testing dataset. To create this table, algorithms that optimize the ROC AUC scores
were utilized, while Table 3 uses algorithms that optimize PR-AUC scores. Information from all manufacturing public
firms in Korea and their related parties are utilized.
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