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Abstract

Centralized school choice systems are being adopted widely, partly based on theo-
retical results that promise desirable outcomes such as matching stability and strategy-
proofness. However, these theoretical results do not directly address many important
distributional goals, such as racial integration and equity. Furthermore, even the theory-
predicted outcomes may not arise if the applicants are not fully informed or rational.
Using data from New York City’s centralized high school choice system, we assess the
impact of school choice on distributional outcomes and decompose the contributions of
students’ residential locations, preferences, informational frictions, and schools’ admis-
sion policies. We also quantify matching stability. To these ends, we estimate a model
of school applications that allows the applicants to have mistaken beliefs about admis-
sion chances and to consider only a limited set of schools. Exogenous variation, such
as positions of schools in the school directory, along with rich information in students’
rank-ordered lists of schools, identifies the model. The results show that, while school
choice integrates races to a small degree and improves welfare across races, these gains
and the stability of the school assignments are compromised by deviations from fully
informed behavior. Schools’ screening policies contribute to racial segregation and tend
to place Asian and White students in their preferred schools.

∗We are indebted to Steven Berry, Philip Haile, and Yusuke Narita for their constant guidance and sup-
port. We thank Jason Abaluck, Victor Aguirregabiria, Joseph Altonji, Ian Ball, Marianne Bernatzky Koehli,
Barbara Biasi, Ali Bray, Jin-wook Chang, Yeon-koo Che, Andrew Chesher, Susan Dynarski, Chao Fu, Ken-
neth Gillingham, Charles Hodgson, John Eric Humphries, Mitsuru Igami, Gerald Jaynes, Alvin Klevorick,
Changhyun Kwak, Koohyun Kwon, Soonwoo Kwon, Mariana Laverde, Costas Meghir, Luis Carvalho Mon-
teiro, Christopher Neilson, Cormac O’Dea, Jonathan Pierot-Hawkins, Jeff Qiu, Katja Seim, Nicholas Snashall-
Woodhams, Jaehee Song, Jintaek Song, Eduardo Souza-Rodrigues, Allen Vong, Stephanie Weber, and Seth
Zimmerman for helpful discussions, advice, and encouragement. We are grateful of the support from the New
York City Department of Education, particularly from Derek Li, Joshua Smith, and Stewart Burns Wade.



1 Introduction

School choice policies aim to mitigate the effect of students’ residential locations on educa-
tional opportunities by allowing students access to schools beyond their neighborhoods. One
version of these policies is to use a centralized assignment mechanism, often motivated by
results from economic theory, such as those that guarantee stability, efficiency, or strategy-
proofness.1 However, the impacts of these mechanisms are still debated. The theoretical re-
sults depend on the assumption that the applicants make well-informed and rational choices.2

They also assume ideal versions of the mechanisms that often differ from those implemented
in practice.3 Furthermore, while many policymakers regard distributive goals such as racial
integration and equity to be among the primary objectives regarding school allocations, the
theoretical results do not directly address these goals. Therefore, the impact of centralized
school choice on a variety of outcomes is an empirical question.

In this paper, we use administrative data from the New York City (NYC) Department of
Education (DOE) to examine the impacts of its centralized public high school choice proce-
dure in 2016-2017. We develop a model of students’ application behavior that allows for two
types of optimization frictions: applicants may consider only a limited set of schools, and they
may have incorrect beliefs about admission chances. We analyze the impact of school choice
on integration and equity of welfare across different demographic groups. We further mea-
sure the contributions of different factors: students’ residential locations, preferences, limited
consideration sets, and schools’ priority groups and rankings over the students. The model
also allows us to measure the contribution of strategic reporting and quantify matching sta-
bility. We provide sufficient conditions that ensure the model is nonparametrically identified
using the type of rank-ordered choice data typically available from centralized school choice
systems.

NYC’s high school assignment procedure allocates approximately 80,000 students to more
than 700 school programs each year, forming a part of the largest centralized school choice
system in the United States. The procedure matches students to schools based on the stu-
dents’ submitted rank-ordered lists of school programs and the school programs’ priorities or
rankings over the students. The assignment mechanism is a version of the Deferred Accep-
tance (DA) mechanism, which in theory guarantees matching stability and strategy-proofness

1See, e.g., Gale and Shapley (1962), Shapley and Scarf (1974), Ergin (2002), and Abdulkadiroğlu and
Sönmez (2003). Such centralized mechanisms are used in, for example, New York City, Chicago, Boston, New
Orleans, Paris, Spain, and Romania (Abdulkadiroglu et al., 2017; Fack et al., 2019).

2See, e.g., Hassidim et al. (2017), Li (2017), and Fack et al. (2019).
3See, e.g., Abdulkadiroğlu et al. (2005), Haeringer and Klijn (2009), and Calsamiglia et al. (2010).
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under idealized assumptions.
However, theory promises little about important distributional outcomes such as diversity

in schools and equity in education, which NYC DOE regards as its top priorities (NYC DOE,
2020a,b,c). Potentially reflecting this tension, students and others have raised concerns about
the diversity in its schools and the equity across demographic groups.4 Consistent with the
concerns, we document that minority students tend to be matched to low-performing schools.

Moreover, even the theoretically predicted properties—matching stability and report
truthfulness—may not hold in practice. These properties rely on the assumptions that appli-
cants are fully informed and rational and that the canonical version of the DA mechanism
is implemented. However, NYC’s DA mechanism deviates from its canonical version,5 and
truthful reporting of preferences cannot be guaranteed to be weakly dominant. Therefore,
there are situations where an applicant must assess admission chances in order to strategize
optimally. We provide evidence that suggests students’ reports are affected by admission
chances in addition to their preferences. Evidence also suggests that applicants may not un-
derstand the properties of the mechanism and take admission chances into account even under
situations where such behavior is weakly dominated. Furthermore, because more than 700
school programs are allocated through the mechanism, applicants are unlikely to be aware of
every option. We find that students are significantly less likely to apply to the schools listed
in the later pages of NYC’s school directory, suggesting that they are not aware of all schools.

Imperfections in the applicants’ knowledge or in matching mechanisms can have distri-
butional consequences. Failure of strategy-proofness may undermine fairness; students with
lower socioeconomic backgrounds may be less likely to understand the exact properties of
NYC’s DA mechanism. Therefore, they may have more difficulties in formulating an optimal
report.6 They may also be less informed about higher-quality schools.7

A model that does not allow for frictions in application behavior forces the researcher
to interpret any observed behavior under school choice as optimal behavior in terms of the
applicants’ preferences, potentially biasing the results in favor of the use of school choice.
Furthermore, a frictionless model attributes differences in the choice patterns across different
demographic groups to differences in preferences when, in fact, they may be caused by differ-
ences in frictions. On the other hand, a model that allows for frictions enables the researcher

4See, e.g., https://gothamist.com/news/wheres-our-mayor-nyc-students-rally-against-school-
segregation

5The students are constrained in the number of school programs that they can list, and there are reas-
signments following the initial assignment procedure.

6See, e.g., Pathak and Sönmez (2008), Sattin-Bajaj (2016), and Basteck and Mantovani (2018).
7See, e.g., Sattin-Bajaj (2016) and Corcoran et al. (2018).
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to disentangle the contributions of different factors—including optimization frictions—to the
observed outcomes and to provide guidance on possible policy interventions.

Therefore, my model allows each applicant to consider only a limited set of the school
options and to have incorrect beliefs about equilibrium admission chances. An applicant
may fail to consider some school because she is not aware of the school or feels she can
never be admitted to the school. Consideration of a school is determined by a latent variable
whose distribution depends on the observables. Even if the applicant considers a school,
her beliefs about admission chances could still be incorrect. The beliefs about admission
chances are determined by the applicant’s expectations about her admission scores relative
to the schools’ cutoffs for admission.8 Such specification allows for misunderstanding of the
matching mechanism. We assume each student maximizes her expected utility with frictions
in consideration and in assessments about admission chances.

Rich information in students’ rank-ordered lists of schools and some exogenous variation,
such as positioning of schools in the school directory, allows us to identify the model. For
instance, while a lack of consideration may affect which schools are listed, it cannot affect
where the listed schools will be ranked. Furthermore, while strategic behavior reflecting appli-
cants’ beliefs about admission chances may affect where the school will be ranked, it cannot
affect which schools are listed unless the list length constraint binds. Identification is also
aided by an assumption that certain observables, such as the page on which a school appears
in NYC’s school directory, can affect the consideration set but not preferences.9 Another
assumption that aids identification is that some students have a set of schools (e.g., noncom-
petitive schools close to home) that they will surely consider. We formalize these intuitive
ideas with sufficient conditions for nonparametric identification, which demonstrate that the
identification does not depend on functional form assumptions and clarify the role of each
assumption and source of data variation.

Using the estimated model, we consider theoretical predictions under idealized implemen-
tations: stability of matching and optimality and truthfulness of students’ reports. The esti-
mated model allows us to quantify stability by measuring the prevalence of justified envy;10 a
stable matching does not have any case of justified envy. We find that limited consideration

8The model of beliefs closely follows that of Kapor et al. (2020) and is related to Ajayi and Sidibé (2017)
and Luflade (2018).

9This is similar to the idea of Martin and Yurukoglu (2017) that use local channel positions as exogenous
variation that shift channel viewership but are uncorrelated with the local political inclinations.

10We say that a student has justified envy for a school if the student and the school are not matched to
each other, but both would prefer to be matched to one another than to (one of) the current assignments.
This definition is consistent with the usage of the term in the literature.
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results in significant amounts of justified envy. Students view approximately nine schools
with justified envy on average; we estimate that Black and Hispanic students view approxi-
mately 10.4 schools with justified envy while Asian and White students view approximately
5.5 schools with justified envy. The estimated model also enables us to simulate students’
subjectively optimal reports and estimate what fraction of the reports are truthfully ordered
in terms of their preferences. Similarly, by comparing the subjectively optimal reports to the
reports that are objectively optimal in terms of the equilibrium admission probabilities, the
optimality of the reports can be evaluated.

We also quantify racial integration and equity in welfare. The differences in outcomes
under school choice matching relative to counterfactual neighborhood school matching repre-
sent the impact of school choice. We then decompose the contributions of different factors—
residential locations, student preferences, schools’ priorities and rankings over the students,
and optimization frictions. The results show that school choice slightly promotes racial in-
tegration relative to the neighborhood matching. For students of each race, the average
proportion of the own-race students in the students’ assigned schools decreases by approxi-
mately 0 to 10 percentage points. School choice also significantly improves welfare across all
races; while only about 6% of the students would be matched to one of their top five pre-
ferred schools under the neighborhood matching, the proportion increases to approximately
35% under the school choice matching. However, these gains are compromised by deviations
from fully informed behavior. If students considered all schools, students would be about
twice as likely to be matched to their top five preferred schools. Schools’ admission priorities
and screening policies segregate races and tend to place Asian and White students to their
preferred schools.

Related Literature My paper complements the studies that empirically examine the con-
tributions of different factors to equity or segregation under centralized school choice pro-
cedures (Oosterbeek et al., 2019; Laverde, 2020; Sartain and Barrow, 2020). My paper dis-
entangles the impacts of lack of information from preferences, given abundant evidence of
informational frictions in NYC. Relatedly, Kessel and Olme (2018) focus on the impact of
school priorities on segregation and Calsamiglia et al. (2020b) theoretically examine the im-
pact of matching algorithms on segregation. Akbarpour et al. (2020) show that strategy-proof
algorithms can neutralize the impacts of unequal outside options. There have been studies
that examine the distributional impacts of school choice in other contexts (e.g., Epple and
Romano, 1998; Hsieh and Urquiola, 2006; Bifulco and Ladd, 2007; Neilson, 2013; Altonji
et al., 2015; Avery and Pathak, 2015; Hom, 2018).
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My paper provides sufficient conditions for nonparametric identification of latent consid-
eration and latent beliefs about admission chances, in addition to latent preferences, using
data on observed choices. These results build on a broad literature that deals with some
but not all of the issues discussed in my paper. Ajayi and Sidibe (2020) allow for beliefs
about admission chances as well as limited consideration due to search costs. In their model,
each applicant engages in a costly search process to expand her consideration set until the
marginal benefit of search exceeds the marginal cost. They model the search technology to
be homogeneous across observable student characteristics, while my paper allows it to be
different across, for instance, ethnicities or neighborhoods. My paper further complements
their paper by providing results on nonparametric identification. Agarwal and Somaini (2018)
provide sufficient conditions for nonparametric identification of preferences while assuming
full consideration and holding fixed a mode of beliefs. Kapor et al. (2020) estimate a model
that allows for latent beliefs about admission chances in addition to latent preferences, using
survey data on perceived admission chances and data on rank-ordered lists. My model of
beliefs largely follows theirs, and my paper complements their work by providing results on
identification that use data on observed choices rather than survey data. Relatedly, Luflade
(2018), Calsamiglia et al. (2020a), and Ajayi and Sidibé (2017) estimate preferences and
beliefs with the observed choice data without surveys. Some papers propose strategies for
estimating preferences while allowing for mistaken beliefs under the Boston mechanism (He,
2017; Hwang, 2017) and while allowing for nontruthful behavior under the DA mechanism
(Artemov et al., 2017; Fack et al., 2019).11 My paper also relates to the broader literature on
identification of discrete choice models.12

My paper quantifies the influences of different factors on student welfare and matching
stability. Relatedly, Abdulkadiroğlu et al. (2017) compares student welfare under coordinated
and uncoordinated assignment procedures in the NYC high school choice system. Luflade
(2018) analyzes the value of information about admission chances on welfare. Other studies
compare student welfare or matching stability under different school assignment procedures
(e.g., Narita, 2016; Abdulkadiroglu et al., 2017; He, 2017; Hwang, 2017; Agarwal and Somaini,
2018; Luflade, 2018; Che and Tercieux, 2019; Kapor et al., 2020; Calsamiglia et al., 2020a). My

11There are also studies that only assume “weak” versions of the truthtelling assumption (e.g., Abdulka-
diroğlu et al., 2017; Che and Tercieux, 2019).

12My paper relates to a strand of the discrete choice literature that discusses the identification of preferences
and consideration sets (e.g., Goeree, 2008; Conlon and Mortimer, 2013; Gaynor et al., 2016; Hortaçsu et al.,
2017; Abaluck and Adams, 2017) and of preferences and beliefs (e.g., Aguirregabiria (2021)). The approaches
used in nonparametric identification results are further related to, for example, Thompson (1989), Bresnahan
and Reiss (1991), Lewbel (2000), Berry et al. (2013), and Berry and Haile (2020).
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paper attempts to prevent the influences of frictions in both consideration and the assessment
of admission chances from being attributed to utilities.

We also contribute to the growing literature that documents frictions in centralized school
choice. We first document evidence of nontruthful reporting even when such a strategy is
weakly dominated, which is consistent with the findings in Artemov et al. (2017) and Fack
et al. (2019). Such evidence complements the theoretical findings that the strategy-proofness
of DA may be difficult for the boundedly rational agents to understand (Li, 2017; Ashlagi
and Gonczarowski, 2018) and the related findings from surveys and experiments (Chen and
Sönmez, 2006; Calsamiglia et al., 2010; Hassidim et al., 2017). We further document evidence
that students may not be aware of all the available school options. Corcoran et al. (2018)
provide evidence that information intervention affects application behavior in the NYC high
school application procedure; others reach similar conclusions in other environments of school
or college applications (e.g., Hastings and Weinstein, 2008; Hoxby and Turner, 2013; Ajayi
et al., 2017; Dynarski et al., 2021).

2 Overview of New York City’s High School Choice

This section gives an overview of the public high school choice in NYC. Section 2.1 provides
the context of NYC’s public high school choice. Section 2.2 explains the theoretical properties
of the DA mechanism implemented in NYC and potential failures in practice.

2.1 The Context

The NYC public high school choice system matches approximately 80,000 students to more
than 700 public high school programs each year. The system uses the following centralized
procedure:

(1) Each applicant submits her rankings over the school programs. She can rank up to 12
school programs.

(2) Each school program ranks applicants according to the admission policies. The rankings
can depend on the admission priority groups assigned to the students, screening based
on students’ past performances and other factors, and lotteries.

(3) NYC runs a student-proposing DA algorithm to assign students to school programs
using the rankings of the students and the school programs.
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Table 1: Characteristics of Students by Ethnicity

Asian Black Hispanic White Totala

Proportion in the sample 16.2% 27.1% 40.7% 14.5% 98.5%

Female 49.7% 50.1% 49.1% 50.2% 49.6%
English Language Learner 8.6% 1.5% 13.5% 4.0% 7.9%
Subsidized lunch 68.3% 76.5% 81.2% 37.1% 70.9%
Neighborhood incomeb($) 58853.2 49797.2 47332.5 73893.4 54071.8

Home boroughs
Bronx 5.4% 24.5% 36.2% 5.9% 23.1%
Brooklyn 28.5% 43.3% 20.1% 34.2% 30.0%
Manhattan 8.1% 8.5% 12.2% 13.5% 10.7%
Queens 53.8% 20.6% 26.9% 25.4% 29.6%
Staten Island 4.2% 3.2% 4.6% 21.0% 6.7%

Home language
English 28.3% 91.6% 40.7% 69.0% 56.7%
Spanish 0.5% 0.6% 59.1% 1.0% 24.3%
Any Chinese 38.1% 0.1% 0.0% 0.3% 6.6%
Other 33.2% 7.7% 0.1% 29.7% 12.4%

State Reading Category
High 46.3% 17.6% 17.2% 49.0% 27.2%
Middle 46.4% 66.7% 65.2% 46.0% 59.4%
Low 7.2% 15.7% 17.7% 4.9% 13.4%

Notes: Except for the proportion in the sample, all the percentage terms rep-
resent the proportions of the relevant categories within each ethnicity.

a 1.5% of students are multi-racial or Native American.
b based on the ZIP code of student’s home address. Median household income
from U.S. Census Bureau, 2013-2017 American Community Survey five-year
estimates, in 2017 dollars.

See Appendix B for algorithmic rules of the DA and the details of implementation. The
matching procedure in NYC creates incentives for the applicants to deviate from truthfully
reporting their preferences, despite the well-known property of DA to be strategy-proof for
the proposing side in its ideal implementation. This is discussed in Section 2.2.

Characteristics of the student sample are summarized in Table 1.13 The district has many
minority students and low-income students. Of the students in the sample, 40.7% of the
students are Hispanic, 27.1% are Black, 16.2% are Asian, and 14.5% are White.14 71% of the
students are eligible for free or reduced-price lunch.

13For discussions of the data and the sample, refer to Section 3.1.
14For a more detailed explanation of race and ethnicity, refer to the NYC DOE’s survey on ethnicity and race

identification: https://www.schools.nyc.gov/docs/default-source/default-document-library/pseform-english.
We use race and ethnicity interchangeably in this paper.
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Table 2: Characteristics of Schools by Borough

Bronx Brooklyn Manhattan Queens Staten Island Total

Graduation rate 0.69 0.74 0.79 0.79 0.78 0.75
(0.14) (0.14) (0.16) (0.16) (0.10) (0.15)

College/career rate 0.49 0.52 0.61 0.64 0.65 0.56
(0.15) (0.17) (0.19) (0.19) (0.15) (0.18)

Average grade 8 math (std.) -0.50 -0.19 0.34 0.48 0.53 0.00
(0.58) (0.82) (1.17) (1.11) (0.64) (1.00)

Value-added (std.) -0.10 0.02 0.05 0.10 -0.53 0.00
(1.12) (0.96) (0.92) (1.01) (0.68) (1.00)

Proportion White 0.03 0.08 0.10 0.11 0.43 0.08
(0.04) (0.12) (0.15) (0.11) (0.21) (0.13)

Proportion Black 0.28 0.54 0.26 0.28 0.17 0.34
(0.12) (0.28) (0.15) (0.26) (0.12) (0.24)

Proportion Asian 0.03 0.07 0.09 0.22 0.08 0.10
(0.03) (0.10) (0.12) (0.15) (0.03) (0.12)

Proportion Hispanic 0.65 0.30 0.52 0.35 0.28 0.45
(0.13) (0.22) (0.21) (0.21) (0.12) (0.24)

9th grade capacity 116.82 159.89 137.38 185.73 316.67 151.17
(78.57) (141.34) (84.23) (138.49) (206.80) (120.31)

Number of schools 111 113 101 79 9 413

Notes : The standard deviations in each respective borough or in NYC are given in parentheses.
Standardized values are indicated by (std.). College/career rate indicates the proportion of students
who graduated from high school four years after entering 9th grade and then enrolled in college,
a vocational program, or a public service program within six months of graduation. Value-added
is the measure of the school value-added by a school, which is provided by the NYC DOE and is
based on the school’s performance relative to a comparison group of similar students. All schools
have equal weight regardless of their class sizes. The sample excludes the nine specialized high
schools and schools with missing data.

The school characteristics are summarized in Table 2 by borough. Schools vary widely
in their characteristics, within and across boroughs. For example, while on average Hispanic
students comprise 65% of the student body in a school in the Bronx, they comprise only 28%
in Staten Island. There is also wide within-borough variability; for instance, the standard
deviation of the proportion of Hispanic students is as large as 22% within Brooklyn. The
schools tend to be small; the average capacity of a 9th-grade class is around 150. While there
are only nine schools in Staten Island, there are roughly around 100 schools in each of the
other four boroughs.
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2.2 Deferred Acceptance Algorithm: Theory and Practice

The DA algorithm has been gaining wider popularity15 based partly on theoretical results that
promise certain desirable properties. One such property is that the mechanism is strategy-
proof for the applicants: truthfully reporting their preference rankings weakly dominates
any other strategy. Another such property is matching stability. An important feature of
matching stability is that the matching does not have any unmatched student-school pair
such that each side prefers the other to (one of) the current assignment(s), i.e., the matching
does not have any cases of justified envy.16 However, these properties do not directly address
distributional outcomes such as racial integration or the equity of assignments.

Even the two desirable outcomes promised by the theoretical results, namely, stability and
truthtelling, may fail in practice. Survey- and experiment-based evidence shows that a fraction
of applicants do not truthfully report even in DA mechanisms.17 Complementing these results,
theoretical studies have revealed that although Deferred Acceptance is strategy-proof, it is not
“obviously strategy-proof” (Li, 2017) in generic cases in the sense that applicants with limited
rationality may not understand its strategy-proofness (Ashlagi and Gonczarowski, 2018). The
failure of strategy-proofness may undermine stability.18 Stability can also fail when students
consider only a limited set of schools. Furthermore, theoretically ideal versions of DA that
guarantee strategy-proofness and stability are only occasionally implemented in practice.19

The matching procedure in NYC creates incentives for the applicants to deviate from
truthfully reporting their preferences. This is because NYC’s implementation of DA deviates
from its canonical implementation in two respects. First, while the canonical implementation
allows applicants to list arbitrarily many school programs, in NYC, applicants can list only
up to 12 school programs. Students who wish to apply to more than 12 school programs
must then decide which of these programs will be listed, which optimally depends not only
on their preferences but also on their admission chances to the schools. Reflecting this, the
2017 NYC High School Directory states that “If you are applying to ‘reach’ programs, be

15DA is used in, for example, Boston, Chicago, Finland, Ghana, and Taiwan (Fack et al., 2019).
16Closely following the definition in Roth and Sotomayor (1992), a matching is stable if there does not exist:

(1) any case of a blocking pair, i.e., an unmatched student-school pair where each side prefers the other to
[one of] the current assignment[s] (which might be an empty seat or no school assignment), and (2) any case
of individual irrationality, where a student [school] would prefer to remain unmatched [have one additional
empty seat] than to be matched to [one of] the current assignment[s]. It follows that a student has justified
envy if he is part of some blocking pair.

17See, e.g., Chen and Sönmez (2006), Calsamiglia et al. (2010), and Hassidim et al. (2017).
18See, e.g., Gale and Shapley (1962). When agents make only payoff-irrelevant deviations from truthful

reporting, then the resulting matching can still be stable (Artemov et al., 2017; Fack et al., 2019).
19See, e.g., Abdulkadiroğlu et al. (2009), Haeringer and Klijn (2009), and Calsamiglia et al. (2010).
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sure to include ‘target’ or ‘likely-match’ programs on your application.” Second, while the
canonical implementation conceives a single round of applications, in NYC, there is an after-
market that follows the main round.20 If a student believes that she can be matched to a
school in this after-market, she may choose not to apply to this school in the main round.

In addition, given that there are more than 700 school programs in NYC, it is unlikely
that the students are aware of every one of them. Corcoran et al. (2018) has found that
providing information about high-performing schools in the local neighborhood altered the
students’ choices in NYC. Additionally, lower-income families may have differentially less
information about high-performing schools due to differences in social networks or other
reasons (Sattin-Bajaj, 2016).

In the next section, we document evidence of nontruthful behavior and frictions in infor-
mation and in the assessment of admission chances.

3 Evidence of Frictions, Disparities, and Usage of Choice

This section presents some motivating descriptive evidence for the main analysis. Section 3.1
introduces the data used. Evidence in section 3.2 suggests a substantial lack of awareness of
the schools. The evidence also suggests that students take admission chances into account
when applying for the schools and misunderstand the properties of the matching algorithm.
Section 3.3 documents the patterns of racial disparities and usage of school choice.

3.1 Data

The main source of data is the administrative data provided by the NYC DOE for the 2016–
2017 academic year. The data include students’ choices of rank-ordered lists, final school
assignments, admission priorities at the school programs, and demographic information. The
demographic information includes students’ gender, race, English Language Learner status,
language spoken at home, home address, subsidized lunch status, disability status, and per-
formance on statewide seventh-grade English and math tests. As some demographic data
are missing for the students who did not attend an NYC DOE public school at the time
of application, we restrict the sample to be the eighth graders who were attending an NYC
DOE public school at the time of application.21 This sample includes the students who opted

20Until 2019, there was a second-round of DA for the schools with remaining seats (see, e.g., Narita (2016)).
In 2020, the NYC DOE began to use waitlists, replacing the second-round DA.

21There are some ninth graders who participate in the process, but they constitute less than 5% of the
total applicants, and they can apply to only a subset of the schools. For computational feasibility, for certain
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out of the school choice process, who constitute approximately 5% of the sample. We also
use publicly available school-level data provided by the NYC DOE.

3.2 Evidence of Frictions

Evidence shows that students face substantial frictions in learning about the school options
and in making strategic decisions while going through the NYC high school application
procedure. Table 3 suggests that students tend not to be aware of the schools listed later
in the high school directory, which is their primary reference for the application process. It
also suggests that students take admission chances into account in their portfolio decisions
even when the list length constraint does not bind; in such a case, it is suboptimal to drop
a school that the student prefers to the outside option unless the student has zero chance of
admission. Each column in the table represents the estimates of a linear probability model
that predicts whether a student has applied to a school. An observation is a student-school
pair. The students who exhausted all the 12 slots were dropped. The columns labeled as All
indicates that all such student-school pairs were used. Surely Aware uses only the student-
school pairs for which the student is assumed to be aware of the school; these are the schools
within a half mile from the student’s home or within a quarter mile from the student’s middle
school. Likely uses only the student-school pairs for which the student is assumed to believe
that he has a positive chance of assignment to the school upon application; these schools
are those that did not fill their seats in the prior year and those such that the student is in
the first priority group and the school accepted every such student in the prior year. Surely
Considered uses the intersection of Surely Aware and Likely. The controls are the interactions
of student ethnicity and other student characteristics (subsidized lunch status and indicators
of borough) and school-level variables (including indicators of borough, average input math
proficiency, attendance rates, and schools’ ethnic composition) and student-school specific
variables (polynomial in distance, indicators for the high school equaling the student’s middle
school, and indicators for school’s borough being the same as the student’s home borough).

Page rank denotes the within-borough rank of the schools in terms of the order in which
they are listed in NYC’s High School Directory, which is more than 600 pages long.22 For
example, a school with a page rank of five is the fifth school to be listed within its borough.
In Table 3, we scaled this variable by 100 so that the fifth school has a value of 0.05. The

results, a random subsample of 10,000 or 20,000 students was used.
22According to Sattin-Bajaj et al. (2018), guidance counselors say that the printed directory is the main

source of information for the applicants.
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schools are ordered alphabetically within each borough; therefore, it may be argued that page
rank can only affect awareness and not preferences or admission chances. Table A.1 shows
that page rank is largely uncorrelated with observable school characteristics. Priority rank
denotes the rank of the admission priority group of the student for the school. Students in
the first priority group are given the priority rank of one.23

The patterns of correlation between page ranks and applications in Table 3 show evidence
for the joint hypothesis that (i) the page rank affects the application decision through the
awareness channel, and (ii) applicants are indeed aware of the schools in the assumed Surely
Aware sets. To see this, suppose that (ii) holds. Then, as the observations in (1), (2), (5),
and (6) are the subsets of student-school pairs such that the school is in the Surely Aware
set of the student, page rank cannot affect application through awareness in these columns.
Thus, the near-zero association of page rank with the application rates in these columns
suggests that page rank does not affect the application decision through any channel other
than awareness. In contrast, an increase in page rank is associated with significant drops
in application probabilities in columns (3), (4), (7), and (8), showing evidence that page
rank does significantly affect application rates through awareness. On the other hand, if it
is taken as given that page rank affects applications strictly through the awareness channel,
these results are consistent with the hypothesis that the applicants are indeed aware of the
schools in the assumed Surely Aware sets. The patterns of correlation between priority ranks
and applications show evidence for the joint hypothesis that (i) the applicants take their
admission priorities into account in their portfolio choice decisions (even when the list length
constraint does not bind) exactly through the assessment of admission chances, and that
(ii) applicants believe that they have positive admission chances for the Likely schools upon
application. To see this, assume that (ii) holds. Note that the observations in columns (5)
and (7) are the subsets of student-school pairs such that the school is in the Likely set of
the student; therefore, for these columns, priority cannot affect applications by affecting the
assessment of whether the applicants have any chance of admission. Thus, the near-zero
association of priorities with application rates in these columns suggests that priorities do
not affect the application decision through any channel other than admission probabilities.
In contrast, lower priorities (higher priority ranks) are associated with drops in application
probabilities in columns (6) and (8), showing evidence that priorities affect application rates
by affecting the applicants’ beliefs about admission probabilities. On the other hand, if it
is taken as given that priorities affect applications strictly through admission probabilities

23If there are multiple school programs in a school, we selected the program that gives the student the
most favorable priority rank.
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Table 4: Regression of Submitted Rank on Priority Rank

Dependent variable: Rank in submitted report

Listed 2 Listed 4 Listed 6 Listed 8 Listed 10 Listed 12

Priority rank 0.106∗∗ 0.153∗∗∗ 0.130∗∗∗ 0.108∗∗ 0.184∗∗∗ 0.241∗∗∗
(0.047) (0.045) (0.040) (0.045) (0.058) (0.033)

Controls Yes Yes Yes Yes Yes Yes
Observations 830 3,148 6,890 8,748 7,581 30,608
F Statistic 73.019∗∗∗ 154.843∗∗∗ 284.708∗∗∗ 345.411∗∗∗ 284.858∗∗∗ 1,124.645∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. An observation is an applicant-school pair. Listed k
selects applicants who listed k schools. Priority rank denotes the rank of the admission
priority group of the student for the school. Students of the first priority group are given the
priority rank of 1.

conditional on observables, these results can alternatively be interpreted as justifying the
hypothesis that the applicants do believe that they have positive admission chances for the
assumed Likely schools upon application.

Table 4 suggests that applicants take priorities into account in ranking the listed schools.
Each column represents a linear regression of the submitted rank of a school on priority rank
and controls using a sample of applicants who listed a given number of schools. The controls
are the same as in Table 3 except that now page rank also constitute the controls. We see that
priority group significantly predicts the rank at which a school is listed; an increase in the
priority rank by one is associated with a 0.11 increase in the submitted rank for the students
who list two schools and a 0.24 increase for the students who exhaust the list by filling in all
the 12 slots. However, in a DA mechanism, the submitted rankings among the listed schools
should optimally reflect only the preferences, not the admission chances. Therefore, to the
extent that priorities are uncorrelated with the unobserved preferences conditional on the
controls, the pattern in the table suggests that applicants make mistakes in strategizing due
to misunderstandings about the properties of the DA mechanism.

3.3 Patterns of Disparities and Choice

Figure 1 document some patterns of racial disparities and usage of choice. College/career
rate denotes the school’s proportion of students who graduated from high school four years
after they entered 9th grade and then enrolled in college, a vocational program, or a pub-
lic service program within six months of graduation. Student’s middle school math score is
the applicant’s performance in the New York State Mathematics test in middle school. The

14



Figure 1: Nearby and Applied Schools, by Ethnicity

Notes: College/career rate denotes the school’s proportion of students who enrolled in college, a vocational
program, or a public service program within six months of graduation. Student’s middle school math score
is the applicant’s performance in middle school in the New York State Math test. The lines represent
smoothed conditional means. The shaded regions represent 95% confidence intervals. The dashed lines
indicate the schools within one mile from the applicant’s home address. The solid lines represent the
schools that the applicant has listed on the submitted rank-order report.

figure shows substantial racial disparities in the schools that applicants live close to (within
one mile from home). These disparities do not converge even after controlling for applicants’
performance in the mathematics tests. However, the patterns suggest that applicants use
school choice to apply to higher-performing schools. Additionally, in terms of the schools
that applicants apply to, the racial disparities are reduced, especially for high-performing ap-
plicants. Furthermore, high-performing applicants are more likely to apply more aggressively
to high-performing schools. The pattern could be explained by differences in preferences,
in awareness, or in assessments about admission chances. Figure A.1 document patterns of
racial disparities in other school characteristics in terms of the schools that students live close
to, apply to, and are assigned to.
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4 Model of Students’ Application Behavior

In this section, we lay out the model of school applications. Students are modeled as expected
utility maximizers who are subject to two types of optimization frictions. First, they may
consider only a limited set of school options. Second, they may have incorrect beliefs about
the equilibrium assignment probabilities. In particular, these incorrect beliefs may reflect
students’ misunderstandings of the properties of the DA mechanism.24

A school is defined to be considered by an applicant if (1) he is aware of that school,
and (2) he believes he has a positive chance of assignment to that school upon listing it.25

The consideration set of applicant i, which is the set of schools considered by applicant i,
is denoted by Ci. Consideration of school j by applicant i is determined by a latent variable
cij ∈ (−∞,∞].26 A school is considered if and only if cij > 0.

Formally, each applicant i solves

max
r∈R(Ci)

J∑
j=0

prijvij (4.1)

where r denotes the report, j ∈ {1, · · · , J} ≡ J denotes a school that is matched through the
application procedure, j = 0 denotes the outside option,27 prij ∈ [0, 1] denotes i’s subjective
belief about the probability of being assigned to j upon submitting report r, and vij is the
utility that i derives from being assigned to j. An agent with a consideration set Ci chooses
a report from R(Ci), which denotes the set of all the ordered lists of schools in Ci with
length at most 12, including an empty list denoted by r = ∅.28 The empty list represents

24While truthtelling behavior is subsumed in the model as a special case, it is not assumed a priori.
25This definition differs from the typical definition of consideration in the discrete choice literature in

that we also impose (2) in addition to (1). However, the imposition of (2) is natural in this setting where
assignment is stochastic at the time of reporting. Furthermore, (the lack of) consideration may be interpreted
to additionally capture some factors other than awareness and degenerate admission chances: fear of rejection,
risk aversion, or the psychological cost of writing. In other words, the model of consideration intends to capture
any reason other than preferences that might prevent a student from listing a school. We stress awareness
and degenerate assignment probabilities, as evidence suggests these channels are significant.

26In Section 7, we will assume that there are certain schools that are surely considered by an applicant;
such a school is denoted by cij =∞ for notational convenience.

27The outside option is interpreted as the inclusive value of remaining unassigned in the main round of the
application process.

28Formally,R(Ci) ≡ {∅}∪
⋃12

k=1

{
(j1, . . . , jk) ∈ Cki | jl1 6= jl2 for all (l1, l2) ∈ {1, · · · , k}2 with l1 6= l2

}
. Note

also that the students actually rank school programs rather than schools. However, for most of the observed
characteristics, we do not observe them separately by programs—they are aggregated at the school level.
Therefore, we simplify the analysis by modeling students as applying to schools as a whole rather than to
programs.
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nonparticipation in the first round of the application process. Although r is an ordered list,
we occasionally abuse notations and treat r as if it were an unordered set. The solution to
the maximization problem is denoted by ri.

We model beliefs about assignment probabilities following Kapor et al. (2020), which
is motivated by the cutoff and score representation of the matching algorithms (Agarwal
and Somaini, 2018; Azevedo and Leshno, 2016). Under this representation, each student
is assigned a scoreij for each school, which is determined as a function of the admission
priority groups, admission lotteries, or the rank of the student based on schools’ screening
policies. One important aspect of DA is that the scoreij can never be a function of the
student’s submitted ranking of the school. Each school has a student-type-specific cutoff, i.e.,
cutoffj(type) =: cutoffij. In NYC, the type indicates whether the student has disabilities.29

The representation states that each student is matched to her first school in the list for which
her scoreij falls below cutoffij. That is,

i is matched to j

⇔

j is the earliest-ranked school in ri for which cutoffij − scoreij > 0.

We model beliefs about the assignment probabilities using this representation. Each student
forms subjective assessments of his cutoffij − scoreij for each school j. For student i, his
assessment of cutoffij− scoreij =: diffij is represented by the student-specific random variable
d̃iffij(k) := c̃utoffij − s̃coreij(k), where k denotes the rank of j in the report; the randomness
represents the student’s perceived uncertainty about the scores and the cutoffs. Note that
the distribution of s̃coreij(k) can depend on the rank k; although the rank cannot affect
the scores in DA, we allow that students may not understand this property.30 However, we
do assume that applicants are monotone in their misunderstanding; they understand that
ranking a school later can never improve their scores. Formally, we assume k < k′ implies
s̃coreij(k) ≤ s̃coreij(k′) for all (i, j) in any realization.

Using the scores-and-cutoffs representation, we model subjective beliefs as follows: if j is
29For school programs that have the educational option admission method, the type also depends on the

applicant’s reading category as determined by the English Language Arts (ELA) score in the middle school.
30If students correctly understood that the rank cannot affect the scores, they would always truthfully

rank the schools among the ones that are listed. On the other hand, even in such a case, it is still possible
that there exists some unlisted school that is considered and preferred to a listed school if the list length
constraint binds.
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listed in report r, then

prij

= Pi(d̃iffij′(krj′) < 0 for all j′ listed before j)Pi(d̃iffij(krj ) > 0) (4.2)

= Πk−1
l=1 (1− qijrl l)qijk

where krj denotes the rank of j in report r, qijk denotes Pi(d̃iffij(k) > 0), and jrl denotes the
school listed at the lth spot in r. If j is not listed in report r, then prij = 0.

The next section addresses the identification of the model.

5 Identifying Preferences, Consideration, and Beliefs

This section lays out an intuitive overview of the identification strategy, where we demon-
strate how three channels—preferences, consideration, and beliefs—can be separated out.
These ideas are formalized in Appendix C.1, where we develop sufficient conditions for non-
parametric identification.

We first demonstrate that there is variation in the data that is affected only by preferences
and consideration, and not by beliefs. Observation 1 shows that beliefs do not affect (1) the
number of schools in an applicant’s list or (2) whether a school is written on an applicant’s
list, given that the applicant’s list contains strictly fewer than 12 schools.

Observation 1 (Variation reflecting only preferences and consideration). Suppose applicant
i’s list ri has strictly fewer than 12 schools. Then, j ∈ ri if and only if both cij > 0 and vij > 0.
Furthermore, ri has strictly fewer than 12 schools if and only if {j ∈ J |vij > 0, cij > 0} has
strictly fewer than 12 schools.

The proof is given in Appendix C.4. Given that Observation 1 shows that there is data
variation that is strictly affected by preferences and consideration, a natural question is
whether there is also variation that can be used to disentangle preferences from consideration.

It is intuitive that such separation may be possible if (1) there were some schools that
are “surely” considered by an applicant or if (2) there were shifters of consideration that
were excluded from utilities. We define the surely considered set of applicant i as the set
of schools that are surely considered by applicant i. It is denoted by Si, and Si ⊆ Ci with
probability 1. The following observation, which follows as a corollary of Observation 1, is
helpful in separating preferences and consideration using the surely considered sets.
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Observation 2 (Variation almost only reflecting preferences). Suppose applicant i’s list ri
has strictly fewer than 12 schools and that j ∈ Si. Then, j ∈ ri if and only if vij > 0.

That is, if one focuses on the student-school pairs for which (1) the student does not
exhaust all the slots in the report and (2) the student surely considers the school, then
whether the school is on his list is solely determined by the preferences.

However, there is a problem in interpreting Observation 2 as a statement precisely about
preferences; students who do not exhaust all the slots are not randomly selected. Rather, the
selection is determined by both preferences and consideration, as discussed in Observation
1. Nonetheless, the selection problem is mild. First, if (vi1, · · · , viJ) are independent across j
conditional on observables,31 the selection problem vanishes through a more “careful” selection
of the student-school pairs.32 Second, while Observation 2 uses only the surely considered sets
to disentangle preferences from consideration, we may also have some consideration shifters
that are excluded from preferences. The conditions in Propositions C.1 and C.4 represent
an idealized analogue of this situation,33 and under such conditions the selection issue again
vanishes. Third, if we were interested in the joint distribution of the utilities among only the
surely considered schools, the selection problem almost vanishes in the sense that any point
of the joint distribution function of the utilities can be bounded by an interval with a length
of approximately .03 in expectation (see case (ii) of Proposition C.5).

Taken together, Observations 1 and 2 provide the basis for the separate identification of
preferences and consideration. That is, intuitively, it may be possible to first identify prefer-
ences using Observation 2 and then identify consideration using Observation 1. Propositions
C.1 and C.2 in Appendix C.1 formalize the intuition by providing sufficient conditions under
which the distributions of preferences and consideration sets are nonparametrically identified.

To identify beliefs, we may use the remaining variation in the data. First, in Observations
1 and 2, we did not utilize the information in how the applicants ordered the schools; we
used only the information of whether schools were listed. Second, we have not yet utilized the
variation in the portfolio choices of applicants who had more than 12 considered schools that
they preferred to the outside option. These aspects of data variation are affected by beliefs

31This is the case in the current version of empirical specification. Such a specification rules out, for example,
the usage of a random coefficient model. However, given a wide set of observed student-level variables,
such a specification may not be too restrictive. Pathak and Shi (2020) finds little gains in performance by
allowing for random coefficients, given the allowed heterogeneity in coefficients along the observed students’
characteristics.

32This is done by selecting (i, j) pairs such that |ri\{j}| < 11 where |ri\{j}| denotes the number of schools
in report ri after excluding j from the report if it was listed. For more discussion, see Section 7.1.

33Proposition C.4 further assumes the presence of an observable utility shifter that are excluded from
consideration.
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in addition to preferences and consideration.

Observation 3 (Variation reflecting beliefs).

(i) Suppose that the applicant has more than 12 schools that are acceptable and con-
sidered. Then, the identities of the schools in ri are determined as a function of(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in (prij)j∈J ,r∈R(J ).

(ii) Suppose that ri contains at least two schools. Then, ri is determined as a function of(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in (prij)j∈J ,r∈R(J ).34

In a restricted setting, Proposition C.3 shows the conditions under which beliefs are non-
parametrically identified. Because the nonparametric identifiability of beliefs is established in
a substantially more restricted setting than that of preferences or consideration, in Appendix
C.5, we discuss identifiability of beliefs with the parametric assumptions laid out in the next
section.

6 Empirical Specification

Student Preferences We specify the utility vij for the empirical analysis as follows:

vij = xvjβ + ξvj + zvijα + εvij,

where xvj = (xvj1, · · · , xvjKx
) denotes a vector of the observed school characteristics, ξvj denotes

the unobserved common taste shifter for j, and zvij = (zvij1, · · · , zvijKz
) denotes a vector of

the observable variables that vary across i, possibly including interaction terms between i−
and j−level characteristics, (i, j)-specific terms, and also i-specific terms. The idiosyncratic
taste shock is represented by εvij ∼i.i.d N(0, 1), and we assume that it is independent of
(xvj , ξ

v
j , z

v
ij).35 We also assume that ξvj is independent of xvj .36 The utilities vij are normalized

in terms of both scale and location. The scale is normalized by setting the standard deviation
of εij equal to 1. The location is normalized by setting the value of the outside option to zero,

34From the construction of the maximization problem in Equation 4.1, report ri and the identities in the
report is a function of (prij)j∈J ,r∈R(J ). To see examples of nonconstancies of the functions with respect to
(prij)j∈J ,r∈R(J ) under a simplified setting, see the cases in Proposition C.3 and the corresponding proof.

35The nonparametric identification results strongly suggest that we can allow richer forms of unobserved
heterogeneity—for example, allowing for random coefficients, or allowing εvij to be correlated across j’s. The
current specification is done as a first pass.

36In relationship with this assumption, the paper does not currently interpret β as “causal.” The assumption
may be relaxed with instruments for potentially endogenous xj ’s.
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i.e., vi0 = 0. Thus, vij is interpreted as the utility of j relative to 0. As we allow i−specific
terms in zij, the value of the outside option relative to all the inside options can vary across
these student-level observables.

The observed school characteristics include average attendance and graduation rates,
average math achievement in middle school, ethnic composition, and ninth grade enrollment.
The observed student characteristics include subsidized lunch status, ethnicity, middle school
math score, English proficiency, neighborhood income, and special education status. The
observed student-school specific characteristics include the distance from the student’s home
to the school, and an indicator for whether school j is applicant i’s middle school.

Consideration We specify the latent variable cij as

cij =

xcjβc + zcijα
c + εcij if j /∈ Si

+∞ if j ∈ Si

where Si denotes the surely considered set for applicant i, xcj = (xcj1, · · · , xcjKc
x
) denotes

a vector of observed school characteristics, zcij = (zcij1, · · · , zcijKc
z
) denotes a vector of the

observable variables that vary across i, possibly including interaction terms between i− and
j−level characteristics, (i, j)-specific terms, and i-specific terms. The idiosyncratic taste shock
is represented by εcij ∼i.i.d N(0, 1),37 and we assume that it is independent of (xj, z

c
ij).38 The

scale is normalized by setting the variance of εcij equal to 1.
The observables (xcj, z

c
ij) always contain all the observables that enter utility, i.e., (xvj , z

v
ij).

This reflects the possibility that any observable that shifts utility may also shift consideration.
On the other hand, there may be variables that only enter (xcj, z

c
ij) but not (xvj , z

v
ij). In my

specifications, these variables reflect the order in which the school appears in the school
directory within its borough, the high school’s distance from the applicant’s middle school,
and the applicants’ admission probabilities at the schools.

More specifically, the page rank variable records the order in which the school appears
in the NYC High School Directory (ranked within its borough), which is the main reference
for the application process and is more than 600 pages long. The schools are ordered alpha-
betically within their respective boroughs in this directory. Because applicants may overlook
the schools that are listed later, the page rank may shift consideration. However, because the

37With the independence assumption, the model becomes an alternative-specific consideration model (Swait
and Ben-Akiva, 1987). For more discussion, see Abaluck and Adams (2017).

38The nonparametric identification results suggest that richer forms of unobserved heterogeneity can be
allowed.
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schools are ordered alphabetically, it is argued that page rank is excluded from the prefer-
ences. Section 3.2 discussed how Table 3 is consistent with the hypothesis. Table A.1 further
shows that page rank is largely uncorrelated with observable school characteristics.

We allow a school’s distance from an applicant’s middle school to affect consideration,
as the applicant may be more aware of the schools that are close to her middle school. We
assume that the distance can affect consideration only within a two-mile boundary. While it
is plausible that a student may prefer the schools that are close to her middle school because
she expects her peers from the middle school to attend these schools, one can control for the
number of students enrolling from the applicant’s middle school.

We also allow a proxy of admission probability of a student at the school to affect her
consideration as it likely affects her assessment about whether she has a positive probability of
admission to the school. The probabilities are calculated conditional on the applicant ranking
the school first in their list. Table 3 supports the hypothesis that admission priorities, which
are correlated with admission chances, affect consideration but not preferences conditional
on observable school characteristics. We assume that the proxies of the probabilities enter
the consideration equation linearly.

Following the definition of the consideration set, the surely considered set is the inter-
section of (1) the set of schools the applicant is surely aware of and (2) the set of schools
that she surely believes she has a positive chance of admission to upon application. My main
specification assumes that the applicant is surely aware of schools within a .75 mile from her
home or a quarter mile from her middle school. Additionally, we assume that the applicant
surely believes she has some chance of admission to any school that did not fill its seats in
the previous year or has a program such that she is in the first priority group and all of the
students in the first priority group were admitted in the previous year. This specification
results in approximately five surely considered schools per applicant on average. Note also
that the surely considered sets are entirely determined by observables.

Beliefs Beliefs about the probabilities of assignments to schools are derived from the
beliefs about the actual cutoffs and scores. A student’s anticipation regarding the actual
diffij ≡ cutoffij − scoreij is represented by the random variable d̃iffij(k). We parametrize the
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distribution of d̃iffij(k) by

d̃iffij(k) = cutoffij − scoreij + εbijk

≡ cutoffij − scoreij + βrank(k − 1) + µ(xbj, z
b
i ) + ηij︸ ︷︷ ︸

:=δdiffijk

+νij

where εbijk denotes the error in assessment. The error is affected by the pessimism bias
µ(xbj, z

b
i ), the idiosyncratic bias heterogeneity ηij ∼ N(0, σ2

η), and student i’s doubt in as-
sessment νij. From the perspective of the student, his subjective assessment d̃iffijk follows
distribution N(δdiffijk , σ

2
ν). In other words, δdiffijk is the mean anticipated difference between the

cutoff and score for agent i, and σν represents the agent’s level of doubt about his assessment.
The specification captures a variety of relevant scenarios. When βrank = 0, subjectively

optimal lists are truthfully ordered in terms of utilities among the listed schools. This repre-
sents the correct understanding of a core property of DA: the scores do not depend on the
submitted ranks, and therefore untruthful ordering within the listed schools is a weakly dom-
inated strategy (Fack et al., 2019). However, this does not imply that students’ reports are
necessarily truthful (in a strong sense), as some unranked schools may be preferred to some of
the ranked schools, even among those within the applicant’s consideration set. On the other
hand, if βrank 6= 0, the submitted rankings may not be truthfully ordered in terms of utilities
even among the listed schools. When σ2

ν =∞, the subjectively optimal lists are always truth-
ful: students rank the schools truthfully among the considered schools that are preferred to
the outside option until they exhaust all the 12 slots. This implies that ranked schools are
always preferred to any considered but unranked school. Such completely truthful behavior
may be objectively suboptimal when the list truncation binds. The model can approximate
equilibrium beliefs when βrank = 0 and the distribution of µ(xbj, z

b
i ) + ηij + νij approximates

the randomness in the actual (pre-realization) cutoffij − scoreij. In NYC, a student’s score
for a school program may depend on the student’s admission priority group for the program,
the school program’s evaluation of the student based on factors such as past performance,
and admission lotteries. Only certain school programs are allowed to screen students based
on past performance.

With the specifications, it follows that

qijk ≡ Pi(d̃iffij(k) > 0) = Pi
(νijk
σν

>
−δdiffijk
σν

)
= 1− Φ

(−δdiffijk
σν

)
and this relationship and Equation 4.2 are used to express prij as a function of the belief

23



parameters and an unobservable ηij.

7 Estimating Preferences, Consideration, and Beliefs

Section 7.1 describes the estimation procedure. Section 7.2 provides the summary of estima-
tion results.

7.1 Estimation

The main results are estimated with the generalized method of moments. Two types of
moment conditions are used: the first type is derived from a partial likelihood, and the
second type is simulated moments. The first type of moment conditions is the scores of the
(partial) likelihood of inclusion of school j in applicant i’s report. The likelihood reflects
the identifying information in Observations 1 and 2 or, more formally, that in Proposition
and C.1 and C.2.39 Accordingly, they give information about preferences and consideration
but not about beliefs. In the likelihood, the sample consists only the (i, j) pairs such that
|ri\{j}| < 11; with a slight abuse of notation, |ri\{j}| denotes the number of schools in the
report ri after excluding j from the report if it was listed. That is, we select student-school
pairs for which the j−excluded ri has less than eleven schools. As |ri\{j}| < 11 implies
|ri| < 12, the condition selects applicants who have not exhausted the list, consistent with
the statement in Observations 1 and 2. Selecting (i, j) pairs with |ri\{j}| < 11, rather than
|ri| < 12, resolves the potential selection problem discussed with regards to Observation 2;
under the specification of the distribution of (εij)j∈J laid out in Section 6, |ri\{j}| < 11 is
independent of εij (Lemma D.1), so that the distribution of the unobservables are unaffected
by such selection. The exact moment conditions are provided in Appendix D.1.

The second type of the moment conditions is derived from the students’ ranking behavior
and the identities of the schools in the full lists, which provide information about all the
channels: preferences, consideration, and beliefs. These moment conditions either reflect the
covariance of the observed characteristics with an indicator for a school being listed in the
first top k ∈ {1, · · · , 12} slots by an applicant or with an indicator for a school being listed in
the first top k slots by an applicant while another school not being included in these slots by
the same applicant. These moment conditions use the identifying information in Observation

39We also weight (i, j) pairs for which i surely considers j, so that such pairs have a combined weight of
15% in the sample. In the current specification, such (i, j) pairs constitute only approximately 1% of the
sample; we amplify their importance by weighting.
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Table 5: Summary of Preference and Consideration

Asian Black Hispanic White

% Schools considered 14.2% 15.6% 13.2% 14.7%

% Schools considered outside the surely considered set 13.9% 14.8% 12.4% 14.3%

% Schools considered among schools preferred to outside option 33.0% 15.8% 12.7% 27.8%

% Students who exhaust 12 slots without any surely considered school 3.5% 3.9% 2.4% 0.5%

% Schools preferred to outside option 4.8% 10.6% 11.2% 3.9%

% Schools preferred to outside option among surely considered schools 14.5% 10.3% 11.2% 13.7%

% Schools preferred to outside option among considered schools 14.5% 10.9% 11.6% 8.2%

% Schools both considered and preferred to outside option 1.5% 1.7% 1.6% 1.2%

3 or, more formally, that in Proposition C.3. The exact moment conditions are provided in
Appendix D.2. They are simulated moments, and we smooth these moments via importance
sampling following Ackerberg (2009).

7.2 Estimates

We present a summary of the key features of the estimated parameters in Table 5 (parameter
estimates are presented in Tables A.3 and A.4). Regardless of ethnicity, the students are
estimated to consider approximately 15% schools on average, which is about 65 schools
in NYC. There is a notable difference across races in the proportion of schools considered
among schools that are (counterfactually) preferred to the outside option—Asian and White
students are much more likely to consider their preferred schools. This reflects both the fact
that (1) White and Asian students tend to have fewer schools preferred to the outside option,
potentially reflecting the fact that these students have better outside options, and (2) White
and Asian students tend to live closer to higher-quality schools (see Figures 1 and A.1).
Students who exhaust all the 12 slots almost always write some surely considered school on
the list. Schools that are both considered and preferred to the outside option is around 1.5%
across races.

Figure 2 further demonstrates a summary of the estimates. For each ethnicity, a point in
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Figure 2: Performance of Preferred and Considered Schools by Ethnicity

(a) Probability of Being Preferred to the Outside Option

(b) Probability of Being Considered

Notes: For each ethnicity, each point in the scatter plot denote a school. Each line represents
a cubic polynomial fit. College/career rate indicates the school’s proportion of students who
graduated from high school four years after they entered 9th grade and then enrolled in
college, a vocational program, or a public service program within six months of graduation.
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the scatter plots represents a school in NYC. The lines represent cubic polynomial fits. In
Figure 2a, compared to Asian and White students, Black and Hispanic students are more
likely to prefer low-performing high schools to their outside options. This can be explained
by Black and Hispanic students tending to have worse outside options and to live closer to
lower-performing schools (see Figures 1 and A.1). On the other hand, the probability of high-
performing schools being preferred to the outside options is similar across the races. Figure
2b shows that Asian and White students are more likely to consider high-performing schools,
partly because they live closer to such schools; distance is an important determinant of
consideration probabilities (see Table A.4). Later versions of the draft will include discussions
about estimates of beliefs about admission chances.

8 The Impacts of Centralized School Choice in Practice

Section 8.1 presents the impact of NYC’s high school choice on racial integration and the pro-
portion of students matched to their preferred schools. It also decomposes the overall impact
into the contributions of different factors. Section 8.2 quantifies the prevalence of justified
envy. It also presents the steps necessary to quantify report optimality and truthfulness.

8.1 Distributional Outcomes and Decomposition

This section analyzes the impact of school choice on the distributional outcomes. The two
distributional outcomes that we focus on are (1) racial integration and (2) the proportion of
students matched to their top five preferred schools by each race. We further decompose the
overall impact of school choice into the impacts of different factors—students’ preferences,
limited consideration sets, strategic mistakes, admission priority groups, and screening of the
students by the schools.

To do this, we consider the actual and the counterfactual matchings as in Table 6. There
are two counterfactual matchings without school choice: random matching and neighborhood
matching. Random matching randomly allocates the students to the schools, respecting the
capacity constraints of the schools. Neighborhood matching minimizes the total distance trav-
eled by the students to the schools while respecting the capacity constraints of the schools.40

40Since some schools are dropped from the dataset due to missing data, and since we match every student
in the dataset (including those who remain unmatched in the data) in random matching and neighborhood
matching, schools do not have enough capacities to fit in every student. We proportionally expand the school
capacities to have just enough seats for the students.
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Table 6: Definition of the Matchings

A. Matchings without school choice

Matching Matching method

Random Random allocation of students to the schools

Neighborhood Minimize total distance traveled by the students to the schools

B. Matchings with school choice

Matching Simulated? Strategizing Consideration Sets Admission rankings Preferences

Actual No Actual Actual Actual Actual

Estimated + Truthtelling Yes Truthtell Estimated Actual adm. priorities
+ Estimated screening

Estimated

Add Full Consideration Yes Truthtell All schools Actual adm. priorities
+ Estimated screening

Estimated

Add Random Screening Yes Truthtell All schools Actual adm. priorities
+ Random screening

Estimated

Add Random Admission Priorities
(Preferences-Only Choice)

Yes Truthtell All schools Random adm. priorities
+ Random screening

Estimated

There are five matchings based on school choice: one is the actual matching, and the four
others represent counterfactual matchings simulated under different scenarios. Actual match-
ing is the actual school choice matching in 2017 from the main round. Estimated + Truthtelling
matching represents the results from a simulated DA where the students have estimated pref-
erences and consideration but are not strategic: students truthfully report their considered
schools in the order of their preferences until they run out of the schools that are preferred to
the outside option or reach the 12-school threshold. In this matching, schools rank students
based on the actual admission priority groups and the estimated screening policies.41 In the
last three matchings, we shut off each factor’s influence one by one and simulate the DA
assignments. Compared to the Estimated + Truthtelling matching, Add Full Consideration
matching turns off limited consideration by assuming that students consider every school. Add
Random Screening matching turns off the schools’ screening policies by forcing the screening
schools to randomly screen students. Add Random Admission Priority matching turns off

41This matching is the current version of the most fully-fledged model; it remains to simulate the outcomes
under the estimated beliefs. Actual matching and the Estimated + Truthtelling matching are different in two
ways: (1) they reflect the modeling and estimation errors, and (2) we impose that students are truthtelling
in the latter matching.
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the effect of the existing admission priority groups by randomly allocating the students to
the priority groups. Note that this matching purely reflects preferences without the influ-
ences of limited consideration, strategic behavior, nor admission priorities. In this regard, an
alternative name for the matching is Preference-Only Choice.

8.1.1 Racial Integration

Figure 3: Percent of Own Ethnicity by Matching, Model-Free
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Notes: For each ethnicity and matching, the plot represents the kernel-smoothed density of the students
with the same ethnicity in the students’ assigned schools. See Table 6 and the discussions for the definitions
of the matchings.

For each ethnicity, Figure 3 shows the density of the students matched to schools with dif-
ferent proportions of the students from their ethnicity. The figure shows that the main round
of school choice tends to integrate ethnicities compared to the counterfactual neighborhood
allocation; school choice tends to reduce the cases of students attending schools where their
peers are mostly of their own ethnicity, with a possible exception for the Whites. However,
the ethnicities are still substantially more isolated under the school choice allocation com-
pared to the counterfactual case of random matching, which represents the scenario of full
integration.

We then analyze which factors contribute to or hamper racial integration and by how
much. Figure 4 shows the isolation index of each ethnicity by matching. For each ethnicity,
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Figure 4: Isolation Indices by Matching

Notes: Each bar represents isolation index of an ethnic group in a matching. See Table 6 and the discus-
sions for the definitions of the matchings.

the isolation index denotes the average percentage of the students of the same ethnicity in a
school; in other words, it is the mean of the corresponding distribution represented in Fig-
ure 3. Therefore, higher isolation indices of ethnicities indicate higher degrees of segregation.
We observe that limitations in consideration tend to segregate; assuming full consideration,
each ethnicity’s isolation index decreases. Furthermore, we observe that the schools’ ranking
policies tend to segregate. Replacing the estimated screening policies by random screening,
the isolation indices decrease; replacing the actual admission priorities with random priorities
has a similar effect.

8.1.2 Welfare and Equity

Each bar in Figure 5 depicts the fraction of students who are matched to their top five pre-
ferred schools in terms of their utilities, for each ethnicity and matching. The sample includes
both the schools that are considered and not considered. Viewing the Estimated + Truthtelling
matching as an approximation to the current school choice matching,42 we see that school
choice tends to increase the proportion of students matched to their top five preferred schools

42Such approximation is only justified when truthtelling approximates the students’ reporting strategy. A
better approximation would be to use the assignments simulated using the estimated beliefs. This remains
to be done.
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Figure 5: Proportion Matched to Top Five Preferred Schools
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Notes: Each bar represents the fraction of the students matched to their top five preferred schools.
The sample includes both the schools that are considered and those that are not. See Table 6 and the
discussions for the definitions of the matchings.

compared to the neighborhood matching. The improvement is large: it increases such pro-
portion from about 6.1% to 35.1% on average. We see that Asian and White students are
more likely to be matched to their preferred schools compared to Black and Hispanic stu-
dents in a neighborhood allocation, reflecting the disparities in the neighborhood schools’
characteristics across races, as seen in Figures 1 and A.1. We also see that limited consider-
ation substantially suppresses the proportion of students matched to their preferred schools,
but the effect is larger for the Hispanic and Black students. The latter can be explained by
the fact that Asian and White students tend to consider high-performing schools, as seen in
Figures 2b and A.2. The results suggest that schools’ screening policies tend to match Asian
and White students to their preferred schools. This potentially reflects the fact that Asian
and White students tend to have better performance in middle school (see, e.g., Table 1) so
that they may be more likely to have higher admission scores for the schools that can screen
students. We also see that Asian and White students tend to benefit from schools’ admis-
sion priorities. This may reflect that a large proportion of the admission priorities are based
on geographic proximity. Since Asian and White students live closer to higher-performing
schools, they tend to be prioritized for admissions in these schools.
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8.2 Empirical Assessments of the Theory-Predicted Outcomes

8.2.1 Matching Stability and Justified Envy

Figure 6: Number of Schools Viewed With Justified Envy

Notes: Each line represents the kernel density of the number of schools viewed with justified envy for
students from each ethnic group.

To quantify matching stability, we count the cases of justified envy; a stable matching does
not have any case of justified envy. A student views a school with justified envy if the student
and the school are not matched to each other, but both would prefer to be matched to one
another than to (one of) the current assignment(s).43 In this definition, we interpret schools’
coarse admission priorities over the students as their preferences. Unlike admission lottery or
screening rankings, information on the admission priorities is available to the applicants at
the time of application. Using the simulation results from Estimated + Truthtelling model,
we show that the students have significant amounts of justified envy; on average, they view
about 8.7 schools with justified envy.44 There are also racial disparities. Figure 6 depicts the
number of schools viewed with justified envy by ethnicity. We see that Black and Hispanic
students tend to have more schools viewed with justified envy compared to Asian and White

43The definition is in line with the usage of the term in the literature.
44The interpretation implicitly assumes that students are truthtelling.
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students;45 on average, Black and Hispanic students view approximately 10.4 schools with
justified envy while Asian and White students view 5.5 schools with such envy. This reflects
the fact that Asian and White students tend to be matched to their preferred schools, as in
Figure 5.

8.2.2 Reports’ Optimality and Truthfulness

The following procedure enables quantification of the proportion of the reports that are truth-
ful or optimal. One first simulates the reports based on the students’ estimated preferences,
consideration, and beliefs. Then, based on simulated preference and consideration, one can
calculate the fraction of the reports that are truthfully ordered among the considered schools.
Similarly, based on simulated preference and the equilibrium admission probabilities, one can
quantify what proportion of the reports are optimal in terms of equilibrium admission prob-
abilities. It is also possible to quantify these outcomes separately for different demographic
groups.

9 Conclusion and Future Directions

In this paper, we use data on school applications and admissions from the NYC DOE to
examine the impacts of its centralized public high school choice procedure in 2016-2017.
We first analyze its impact on distributive outcomes. The results show that, compared to
neighborhood allocation, school choice slightly improves racial integration and significantly
increases the proportion of students matched to their preferred schools across all races. We
further quantify the contributions of different factors. We find that admission priorities and
screening policies tend to segregate races. They make it more likely for the Asian and White
students to be matched to their preferred schools. We also find that limitations in consid-
eration tend to segregate races and decrease welfare for all races. Furthermore, we estimate
the prevalence of justified envy. We find that Black and Hispanic students are more likely to
have justified envy than Asian and White students.

Viewed broadly, my findings provide support for the NYC DOE’s recent policy initia-
tives.46 Some NYC DOE schools have adopted a pilot policy to offer admission priority to
students of lower socioeconomic status.47 The NYC DOE also replaced the physical high

45More sensitivity checks are needed to confirm the robustness of this finding.
46For details, see https://www.schools.nyc.gov/docs/default-source/default-document-library/

diversity-in-new-york-city-public-schools-english.
47Some schools are participating in an initiative to give admission priority to applicants who
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school directory with an online version in an attempt to make it easier for the applicants to
navigate through the schools and to provide more accurate and updated information.48

Methodologically, we develop and estimate a model of student application behavior that
allows for two types of optimization frictions: applicants may consider only a limited set of
school options and may have incorrect beliefs about admission chances. We provide sufficient
conditions ensuring that the model is nonparametrically identified using the type of rank-
ordered choice data typically available from centralized school choice systems.

The limitations of the current paper indicate future research directions. First, this pa-
per currently models the student as taking the school characteristics as given from the year
before the applications. Therefore, the counterfactual results presented here are best un-
derstood as short-run impacts. We plan to evaluate the long term impacts by allowing the
school characteristics to change endogenously as new students are assigned to schools and by
estimating production functions that map the input student characteristics to educational
outcomes. Second, this paper treats the supply of schools as given. However, the current vari-
ety of highly differentiated schools in NYC likely depends on the employment of a large-scale
school choice program. Therefore, an interesting research agenda would be to examine the
response of the supply of schools due to the presence of school choice and its implications for
welfare and the distributional outcomes.

are eligible for subsidized lunch, applicants in temporary housing, and English Language Learners.
For more details, see https://www.schools.nyc.gov/enrollment/enrollment-help/meeting-student-
needs/diversity-in-admissions.

48Further analysis is necessary to determine whether the results were as intended. For dis-
cussion, see https://www.thecity.nyc/education/2019/5/22/21211050/city-public-high-school-
directory-takes-virtual-turn.
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A Additional Tables and Figures

Table A.1: Regression of Page Rank on School Characteristics

Dependent variable:

Page rank

Constant 52.965
(50.340)

Average grade 8 math proficiency (std.) −5.129
(3.738)

Graduation rate 41.384∗

(23.927)

Attendance rate −54.318
(60.453)

College/career rate 8.453
(21.425)

Percent of students who feel safe 16.884
(29.427)

9th grade seats −0.007
(0.015)

Percent Asian −3.557
(19.134)

Percent Black 1.555
(8.762)

Percent White −19.579
(18.452)

Observations 352
R2 0.037
F Statistic 1.456 (df = 9; 342)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in paren-
theses. Standardized values are indicated by (std.). College/career
rate indicates the proportion of students who graduated from high
school four years after they entered 9th grade and then enrolled in
college, a vocational program, or a public service program within
six months of graduation. Each school has equal weight regardless
of class size. The sample excludes the nine specialized high schools
and schools with missing data.
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Figure A.1: Schools Nearby, Applied to, and Matched, by Ethnicity

Notes: Nearby schools are the schools within one mile from student’s home. The applied and assigned
schools are from the main round of applications. pct_stu_safe denotes the proportion of students who
have reported that they feel safe in the school. College_career_rate indicates the proportion of students
who graduated from high school four years after they entered 9th grade and then enrolled in college, a
vocational program, or a public service program within six months of graduation.
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Table A.3: Preference Parameter Estimates

Asian Black Hispanic White

High is middle 2.50 (0.22) 2.07 (0.10) 2.39 (0.10) 2.23 (0.22)

Average grade 8 math (std.) 0.31 (0.18) 0.14 (0.03) 0.15 (0.04) 0.16 (0.07)

College/career rate 0.08 (0.47) 0.82 (0.11) 0.48 (0.14) -0.15 (0.37)

9th grade seats (std.) 0.23 (0.03) 0.22 (0.02) 0.21 (0.03) 0.15 (0.02)

Distance to school -0.08 (0.04) -0.01 (0.01) -0.03 (0.02) -0.10 (0.02)

Proportion Asian -0.51 (0.20) -2.03 (0.13) -1.58 (0.18) -0.93 (0.21)

Proportion Black -1.97 (0.41) -1.76 (0.07) -1.70 (0.16) -2.06 (0.29)

Proportion Hispanic -1.52 (0.37) -1.68 (0.10) -1.36 (0.10) -1.61 (0.28)

Proportion White -0.55 (0.18) -1.46 (0.16) -0.36 (0.24) 1.87 (0.36)

Standard deviation of εvij 1 1 1 1

No. surely considered student-school pairs 2,030 7,693 11,505 1,966

No. student-school pairs 524,051 826,826 1,286,758 508,981

Notes: High is middle is an indicator variable reflecting that the middle school is the same school as the high
school that the applicant is applying to. College/career rate indicates the proportion of students who graduated
from high school four years after they entered 9th grade and then enrolled in college, a vocational program, or a
public service program within six months of graduation. Standardized values are indicated by (std.).
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Table A.4: Consideration Parameter Estimates

Asian Black Hispanic White

Borough match 0.98 (0.31) 1.28 (0.07) 1.12 (0.09) 1.25 (0.19)

Close to middle school 3.23 (1.27) 7.42 (0.31) 2.98 (3.77) 1.12 (0.31)

Average grade 8 math (std.) 0.10 (0.24) 0.12 (0.04) 0.03 (0.04) 0.45 (0.14)

College/career rate 0.77 (0.75) 0.68 (0.17) 1.10 (0.19) 0.50 (0.74)

9th grade seats (std.) 0.02 (0.05) -0.01 (0.02) 0.02 (0.03) 0.09 (0.03)

Distance to school -0.15 (0.04) -0.10 (0.01) -0.10 (0.01) -0.11 (0.02)

Page rank (std.) 0.00 (0.02) -0.09 (0.01) -0.07 (0.01) 0.01 (0.02)

Proxy probability of admission (std.) -0.07 (0.04) 0.04 (0.01) 0.03 (0.01) -0.07 (0.03)

Proportion Asian -1.28 (0.46) -2.02 (0.15) -2.30 (0.16) -3.24 (0.38)

Proportion Black -1.03 (0.72) -0.92 (0.12) -1.99 (0.20) -0.99 (0.64)

Proportion Hispanic -0.54 (0.74) -1.42 (0.15) -1.16 (0.16) -0.11 (0.68)

Proportion White -1.45 (0.68) -2.09 (0.14) -2.55 (0.13) -2.83 (0.36)

Standard deviation of εcij 1 1 1 1

No. of surely considered student-school pairs 2,030 7,693 11,505 1,966

Number of student-school pairs 524,051 826,826 1,286,758 508,981

Notes: Borough match is an indicator variable reflecting that the student’s home and the high school are located
in the same borough. College/career rate indicates the proportion of students who graduated from high school four
years after they entered 9th grade and then enrolled in college, a vocational program, or a public service program
within six months of graduation. Standardized values are indicated by (std.).
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Figure A.2: Characteristics of Considered Schools by Ethnicity

Notes: College/career rate indicates the proportion of students who graduated from high school four years
after they entered 9th grade and then enrolled in college, a vocational program, or a public service program
within six months of graduation.
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B Deferred Acceptance Mechanism in NYC

In the 2016–2017 school year, the DOE ran two rounds of DA assignments for the traditional
(non-specialized) high schools and one round of such DA assignments for the nine specialized
high schools. In my main analysis, we focus on the first round for the non-specialized high
schools; approximately 70% of all the high school students in NYC attend one of these schools.
This is the “main” round, in the sense that approximately 90% of the final matches are formed
in this round.

Using the students’ submitted rankings over the school programs and the programs’ rank-
ings over the students, the DA algorithm (Gale and Shapley (1962); Abdulkadiroğlu and
Sönmez (2003)) matches the students to the school programs according to the following
procedure.

• Step 1: Each applicant proposes to his first-ranked school program, if any. Each school
program sorts the proposers according to its rankings and tentatively accepts all the
highest-ranking proposers up to its capacity. It rejects any other proposers.

Then for each k ≥ 2,

• Step k: Each applicant who was not tentatively accepted by any program in Step (k−1)

proposes to his highest-ranked school program that has not previously rejected him,
if any. Each school program sorts the new proposers and the applicants tentatively
accepted previously according to its rankings and tentatively accepts all the highest-
ranking applicants up to its capacity. All the other proposers are rejected.

The algorithm stops when there is no proposing student. Each student is assigned his final
tentative assignment. In NYC high school match, the school programs have separate seats
(capacities) for students with and without disabilities. Therefore, DA algorithms are run
separately for the two student groups defined by their disabilities type.

C Identification: Details

C.1 Nonparametric Identification

In this section, we provide sufficient conditions for the nonparametric identification of the
model. These results show that functional form assumptions are not necessary for identifica-
tion and confirm the intuition in the stepwise-identification argument developed in Section
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5. The main results are provided here, and Appendix C.2 provides additional results under
stronger and weaker sets of assumptions. Taken together, these identification results clarify
the role of each assumption and the source of data variation.

In stating the nonparametric identification results, we do not make any parametric as-
sumption about utilities, latent consideration variables, and beliefs (vi, ci, pi) ≡

(
(vij)j∈J ,

(cij)j∈J , (p
r
ij)r∈R(J ),j∈J

)
as made in Section 6. Furthermore, we do not assume that the max-

imum allowed list length, denoted L, has to equal 12.
On the other hand, we do assume the following for every proposition. First, we assume

that beliefs are generated by students making anticipations about differences in their scores
and cutoffs, in the sense that Equation 4.2 holds. Second, we assume that perceived scores are
increasing in rank as in Section 4. Third, we assume that the distribution of vi|zi is continuous
for every zi ∈ supp(zi) and that qijk ≡ Pi(d̃iffij(k) > 0) ∈ (0, 1) for every considered schools.

To discuss the results, we define two concepts: an extreme consideration shifter excluded
from preferences and a special regressor with large support (Thompson, 1989; Lewbel, 2000).

Definition 1. Let zi ≡ (ai, z
−
i ). A J−dimensional random vector ai is called an extreme

consideration shifter excluded from preferences if vi |= ai conditional on z−i and, for
all z−i in its support, there exist some known ā(z−i ) ∈ supp(ai|z−i ) such that P

(
cij > 0|aij =

āj(z
−
i )
)

= 1.

In the empirical setting, the role of an extreme consideration shifter excluded from pref-
erences is jointly played by surely considered sets49 and the excluded consideration shifters,
such as page rank and distance from middle school. However, they each play an imperfect
role; surely considered sets only move certain schools’ consideration probabilities for each
student, and the excluded consideration shifters do not move consideration probabilities to
1, i.e., to the extreme.50

Definition 2. A random vector zyi is called a special regressor for yi with large support
conditional on xi if yi = ỹi − zyi with ỹi |= zyi conditional on xi and supp

(
zyi |xi

)
= RK for

all xi in its support, where K is the dimension of yi.

In the empirical setting, the role of a special regressor is played jointly51 by any exogenous
(i, j)−level observables, including distance to school, and the interactions between school

49The indicators for surely considered sets are determined as a function of only the observables; therefore,
they are excluded from preferences conditional on observables.

50To complement the result, Proposition C.5 only assumes presence of surely considered sets.
51Results in Berry and Haile (2020) may be used to formally show how different variables can form an

index that mimics the role of a special regressor. This is to be done in future work.

48



characteristics and the student-level observables.52

We first establish the nonparametric identifiability of preference. Proposition C.1 shows
that the joint distribution of utilities is nonparametrically identified with a large-support
special regressor for the utilities and an extreme consideration shifter.

Proposition C.1 (Identification of preferences). Suppose that we observe the following:

(a) an extreme consideration shifter excluded from preferences, named ai, and

(b) a special regressor for vi, named zvi , with large support conditional on zi\(zvi , ai).

Then, the joint distribution of utilities conditional on observables, P
(
vi ≤ v

∣∣zi), is identified
for almost all (v, zi) ∈ supp(vi, zi).53

Intuitively, one can use the extreme consideration shifter to push the consideration prob-
ability of every school to 1, in which case the probability of listing schools becomes a sole
function of the utilities. One can then use the special regressor to “trace out” the distribution
of the utilities (Agarwal and Somaini, 2018). This distribution of the utilities is not condi-
tioned on the value of the extreme consideration shifter, as it was assumed to be conditionally
independent of the utilities. Note further that no assumption was made about allowed list
length.

In my empirical model, the set of exogenous (i, j)−level observables that enter utilities,
such as distance to school from home and the interactions between school characteristics and
the student-level observables, play the role of the special regressor. Although they may not
have large support in practice, it is not essential; with a special regressor with limited support,
one can still obtain identification of the distribution of utilities on limited support. The role
of an extreme consideration shifter excluded from preferences is jointly played (imperfectly)
by surely considered sets and the excluded consideration shifters, such as page order and
distance from middle school.

Now we turn to the identification of consideration. Proposition C.2 states that the dis-
tribution of consideration indicators c∗ij := 1(cij > 0) can be nonparametrically identified
with a special regressor with large support, given that the distribution of utilities are already
identified (potentially through Proposition C.1). It also assumes that the allowed list length L

52Note that most results—except case (ii) of Proposition C.4, which uses identification-at-infinity
argument—can be extended to allow for limited support on the special regressor at the cost of identify-
ing the distribution of the utilities or the latent variables for consideration on limited support.

53If the large support assumptions on the special regressors are weakened, then P
(
vi ≤ v

∣∣zi) is also identified
on a limited support.
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equals the number of schools J , i.e., an applicant can list arbitrarily many schools. The joint
distribution of consideration indicators is point-identified if the utilities vi are independent
of latent consideration variables ci conditional on observables. It is partially identified if the
conditional independence fails.

Proposition C.2 (Identification of consideration). Suppose that P
(
vi ≤ v|zi = z

)
is iden-

tified for almost all (v, z) ∈ supp(vi, zi). Suppose that we observe a special regressor for ci,
named zci , with large support conditional on zi\zci . Suppose also that L = J . Then,

(i) if ci is independent of vi conditional on zi, the joint distribution of consideration indi-
cators conditional on observables, P

(
c∗i ≤ c∗

∣∣zi), is identified for almost all (c∗, zi) ∈
supp(c∗i , zi).54

(ii) if ci is not independent of vi conditional on zi, P
(
(c∗ij)j∈A ≤ c∗

∣∣(vij)j∈A > 0, zi
)
is

identified for almost all (c∗, zi) ∈ supp
(
(c∗ij)j∈A, zi

)
and for all A ⊆ J .

Remark. In relation to Proposition C.1, it is allowed that ai = zci or zci = zvi .55

The intuition for part (i) is as follows. Given that an applicant can write an arbitrarily
long list, whether to list a school is a function of only utilities and consideration.56 However,
knowing the distribution of the utilities already, the probability of schools being listed is
informative only about consideration. The special regressor then traces out the distribution of
ci, the latent consideration variable. Since consideration indicator c∗i is completely determined
by ci, the distribution of c∗i is also traced out.

In my empirical model, the set of exogenous (i, j)−level observables that enter considera-
tion equation, such as distance to high school from students’ home or middle school and the
interactions between school characteristics and the student-level observables, play the role
of the special regressor. Again, the fact that they may not have large support in practice is
not essential; a special regressor with limited support still enables the identification of the
distribution of the latent consideration variable on limited support.

Now we turn to the identification of the beliefs about assignment probabilities. To present
this result, we first define equivalent classes of beliefs. Two beliefs are behaviorally equivalent
if they lead to the same reporting behavior conditional on any realization of the utilities and
the consideration sets:

54If the large support assumptions on the special regressors are weakened, then P
(
c∗i ≤ c∗

∣∣zi) are also
identified on a limited support.

55On the other hand, it is never possible that ai = zci = zvi .
56Not allowing for truncated lists is a limitation of the result. Proposition C.4 present a result with poten-

tially truncated lists with stronger data requirements.
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Definition 3. Two beliefs {prj}j∈J ,r∈R(J ) and {p
′r
j }j∈J ,r∈R(J ) are behaviorally equivalent

if for all v ∈ RJ and Ci ⊆ J , arg maxr∈R(Ci) v · pr = arg maxr∈R(Ci) v · p
′r.

where (pr) = (prj)j∈J and similar for (p′r). The notion of behavioral equivalence relates to
the notion of normalization.

Here we state the identification result on beliefs, which holds under a restricted setting.

Proposition C.3 (Identification of beliefs). Suppose that P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is

identified for every (v, c∗, z) ∈ supp(vi, c
∗
i , zi). Suppose that either (1) L = J = 2, or (2)

L = 1. Suppose also that beliefs are constant given observables, i.e. prij = prj(zi) ∀(i, j, r).
Then, beliefs {prj(zi)}j,r are identified up to behaviorally equivalent classes.

C.2 Supplementary Propositions

Proposition C.4 (Identification of preferences and consideration with ideal data). Suppose
that we observe zi ≡ (zvi , z

c
i , z
−
i ) where (zvi , z

c
i ) is a special regressor for (vi, ci) with large

support conditional on z−i . Then,

(i) if L = J , P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is identified for every (v, c∗, z) ∈ supp(vi, c

∗
i , zi).

(ii) if L < J , P
(
c∗i ≤ c∗|zi = z

)
is identified for every (c∗, z) ∈ supp(c∗i , zi) and P

(
vi ≤

v|zi = z
)
is identified for every (v, z) ∈ supp(vi, zi).

Proposition C.5 (Identification of preferences with surely considered sets). Suppose that we
observe a special regressor for vi, named zvi , with a large support conditional on z−i . Suppose
also that Si ≡ S(zi) is constant with respect to zvi . Then,

(i) if L = J , P
(
(vij)j∈S(zi) ≤ v|zi

)
is identified for all (v, zi) in its support.

(ii) if L < J , P
(
(vij)j∈A ≤ x|z

)
is bounded within an interval of width P(|ri| = L, ri ∩A =

∅|zvi = x, z−) for all (x, z,A) such that A ⊆ S(z) with |A| ≤ L.

C.3 Lemmas

These lemmas are used in the proofs of the observations and the propositions. We define that
a school is acceptable if vij > 0 and unacceptable if vij < 0.

Lemma C.1. Consider a list r that contains an unacceptable school before an acceptable
school, and the lowest-ranked school is an acceptable school. Then, in any realization, r gives
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a weakly less payoff than an alternative list that switches the lowest-ranked school unacceptable
school with the school that gives the maximum utility among the schools that follow this lowest-
ranked unacceptable school.57

Lemma C.2 (Never write an unacceptable school). For any list r that contains a considered
but unacceptable school, there is an alternative list that contains no unacceptable school and
gives strictly higher expected utility.

C.4 Proofs

Proof of Lemma C.1. By assumption, the list r has an unacceptable school before an ac-
ceptable school. Let j− denote the lowest-ranked unacceptable school in the list. Then, by
construction, (1) there are some schools that follow j− and (2) these schools are all accept-
able. Let the utility-maximum of these school be indicated by jmax (and there is always such
a school). Then, the report r reads:

r = ( · · ·︸︷︷︸
A

, j−, · · ·︸︷︷︸
B

, jmax, · · ·︸︷︷︸
C

)

where A, B, and C denote the set of the schools in each respective position. Each of A, B,
and C may or may not be empty.

Consider an alternative list r′ that switches jmax with j−, as in the statement:

r′ = ( · · ·︸︷︷︸
A

, jmax, · · ·︸︷︷︸
B

, j−, · · ·︸︷︷︸
C

)

where the schools and the ordering within each A,B, and C is unaltered.
Representing an outcome in the relevant probability space by ω, we want to show that

r′ weakly dominates r for every ω, i.e., viµ(i;r)(ω) ≤ viµ(i;r′)(ω) for all ω, where µ(i; r) is the
assignment of i in the case that i reports r. To see this, suppose not: there is ω such that
viµ(i;r)(r;ω) > viµ(i;r′)(r

′;ω). Then, it must be that the student get rejected at all the A schools
under this ω regardless of submitting r or r′, i.e.,

π̃j(ω) < s̃coreij(r(j);ω) ≡ s̃coreij
(
r′(j);ω

)
∀j ∈ A

where r(j) and r′(j) denote the ranks of school j in r and r′, respectively. This is because
otherwise, he gets into the same school regardless of reporting r or r′ and obtains the same

57The lemma is similar to what appears in the proof of Proposition 3 (ii) in He (2017).
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utility. Note that it is impossible that he gets rejected in one report but not in the other
report - his scores for any j ∈ A under the two reports are exactly the same in the two reports
as the submitted rank of any j ∈ A in the two reports are the same. This is because score is
restricted to depend only depends on certain aspects of the report - i.e., the rank.

Also, it must be that he gets rejected by j− under r. Otherwise, conditioning on that the
student is reject by all schools in A, this is the worst that can happen to him under r or r′

because B and C can never have an unacceptable school by construction. Therefore, there is
no way that j− will strictly beat allocation under r′. Also, it must be that he gets rejected by
jmax under r′; otherwise, this is the best that can happen to him under r or r′ and so there
is no way that allocation under r will strictly beat jmax. Thus,

π̃j−(ω) < s̃coreij−
(
r(j−);ω

)
π̃jmax(ω) < s̃coreijmax

(
r′(jmax);ω

)
Similarly, it must be that he fails to make the cutoffs (in either reports) by all schools in

B. Otherwise, he gets same utility under the two reports. Note that he makes the cutoff in
any of these schools in B by submitting r iff he does so in r′; the score for the school is the
same under the two reports.

Further, it must be that he is rejected by jmax under r and j− under r′. This follows from
the assumption that perceived scores are monotonic in the submitted rank and the second
step:

π̃j−(ω) < s̃coreij−
(
r(j−);ω

)
≤ s̃coreij−

(
r′(j−);ω

)
π̃jmax(ω

)
< s̃coreijmax

(
r′(jmax);ω

)
≤ s̃coreijmax

(
r(jmax);ω

)
By the same reasoning, it must be that he fails to make the cutoffs (in either reports) by

all schools in C. Otherwise, he gets same utility under the two reports. Note that he makes
the cutoffs in all of these schools in B by submitting r iff he does so in r′; the scores are the
same under the two reports.

Then, they get rejected by all schools in either of the two reports, and is placed into outside
option, in which they derive the same utility. This contradicts viµ(i;r)(r;ω) > viµ(i;r′)(r

′;ω) we
started with.

Proof of Lemma C.2. We first show that, for any r that contains an unacceptable school,
there is an alternative list without any unacceptable school that gives weakly higher expected
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utility.
Suppose that r has an unacceptable school at the very end. Then, it is straightforward to

verify that dropping this school weakly increases expected utility. Repeat this process until
the last school is an acceptable school. If the list is now composed of only the acceptable
schools (or is empty), then such a list is an alternative list that we wanted to find.

If there are still some unacceptable schools in the list, then Lemma C.1 can be applied
as there is some acceptable school after any unacceptable school. We further know that the
new report found by the lemma must give weakly higher expected utility, as we’ve claimed
that for any outcome ω, the new report must give utility weakly higher than the old report.

Apply the lemma to switch the lowest-ranked unacceptable school to a lower spot in the
list. If this schools is now in the last spot, then drop this. If not, the schools that appear after
this lowest-ranked unacceptable school are all acceptable, so that we can apply the lemma
again. Continue to apply this lemma, this unacceptable the school gets moved to the last
spot, in which case we can drop the unacceptable school and obtain even (weakly) higher
expected utility.

If the resulting report is now filled with only acceptable schools (or is empty), we have
found an alternative list that we wanted to find. If not, repeat the aforementioned process
of moving the lowest-ranked unacceptable school down the list and then dropping it, until
there is no unacceptable schools in the list. Every such process gives weakly higher expected
utility, and therefore the resulting list gives weakly higher expected utility.

Note that the process above now has at least one occasion where an unacceptable but
considered school is dropped from the last slot. By assumption, a student believes he has
positive chance of matching to a considered school upon listing. Therefore, this drop strictly
increases his expected utility.

Proof of Observation 1. Let L denote the maximum allowed length of the list. We show that
the first statement holds.

To show that j ∈ ri implies both j ∈ Ci and vij > 0, we show the contrapositive. First,
if j /∈ Ci, j cannot be on ri by definition of consideration. Second, suppose that vij < 0 and
j ∈ Ci. By Lemma C.2, such a list with an unacceptable but considered school cannot be
(subjectively) optimal.

Suppose now that vij > 0 and j ∈ Ci, but j /∈ ri. Then one can strictly gain by adding
j on the bottom of the list, which contradicts subjective optimality of ri. The strict relation
comes from j ∈ Ci; a considered school has (subjectively) positive admission chance upon
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listing. Addition of a school is possible since ri has not exhausted all the available slots.
We now show that the second statement holds. The second statement is equivalent to the

following statement: ri has exactly L schools if and only if {j ∈ J |vij > 0, j ∈ Ci} has L
schools or more.

Suppose first that |ri| = L but |{j ∈ J |vij > 0, j ∈ Ci}| < L. Because all schools in
ri must be considered by definition, there must be some schools in ri that is subjectively
reachable but is unacceptable. By Lemma C.2, such a list cannot be subjectively optimal.

Suppose now that |{j ∈ J |vij > 0, j ∈ Ci}| ≥ L but |ri| < L. Then, there must be some
school j /∈ ri such that vij > 0 and j ∈ Ci. Adding j at the bottom of the list gives strictly
higher payoff, contradicting that ri is subjectively optimal.

Proof of Proposition C.1. I implicitly condition everything on zi\(zvi , ai). Take any zv ∈
supp(zvi ) and the according ā ≡ (ā1(z

v), · · · , āJ(zv)). Note that P(ci > 0|ā) = 1 implies
P
(
ci > 0

∣∣∣zvi , ā) = 1 almost surely. Then, almost surely,

P
(
j /∈ ri ∀j = 1, · · · , J

∣∣∣zvi = zv, ai = ā
)

= P
(
cij < 0 or vij < 0 ∀j = 1, · · · , J

∣∣∣zv, ā) by proof of Observation 1 with generalized L

= P
(
vij < 0 ∀j = 1, · · · , J

∣∣∣zv, ā) by P(ci > 0|zv, ā) = 1

= P
(
vi < 0

∣∣∣zv, ā)
= P

(
vi < 0

∣∣∣zv) by vi |= ai|zvi

= P
(
ṽi < zv

)
. by ṽi |= zvi

As the first line is observed, the last line is identified almost surely for zv ∈ RJ by the large
support assumption on zvi . Then, by the independence assumptions on ai and zvi , P(vi >

x|zv, a) = P(vi > x|zv) = P(ṽi > x + zv). Therefore, P(vi > x|zv, a) = P(vi > x|z) is
identified for almost every (x, z) ∈ supp(vi, zi).

Proof of Proposition C.2. I will implicitly condition everything on zi\zci . I first prove (i). Take
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any zc ∈ supp(zci ). Note that

P
(
j ∈ ri ∀j = 1, · · · , J

∣∣∣zci = zc
)

= P
(
ci > 0, vi > 0

∣∣∣zc) by proof of Observation 1 with generalized L

= P
(
ci > 0

∣∣∣zc)P
(
vi > 0

∣∣∣zc) by ci |= vi|zci

= P
(
c̃i > zc

)
P
(
vi > 0

∣∣∣zc) by c̃i |= zci

but the first line is observed and P
(
vi > 0

∣∣∣zc) is known on almost all zc ∈ supp(zci ) by

assumption. Thus, P
(
c̃i > zc

)
is identified almost surely. By the assumptions on zci , P

(
ci >

x
∣∣∣zc) = P

(
c̃i > x+zc

)
and thus P

(
ci > x

∣∣∣zc) is identified for almost all (x, zc) ∈ supp(ci, z
c
i ).

The result follows from the definition of c∗i , i.e. c∗ij = 1(cij > 0) for all (i, j).

The proof of (ii) follows analogously by noting that P
(
j ∈ ri ∀j ∈ A

∣∣∣zci = zc
)

=

P
(

(c̃ij)j∈A > (zj)
c
j∈A

)
P
(

(vij)j∈A > 0
∣∣∣zc) and that P

(
j ∈ ri ∀j ∈ A

∣∣∣zci = zc
)

is observed

while P
(

(vij)j∈A > 0
∣∣∣zc) is assumed identified.

Proof of Proposition C.3. Define v∗ij = vij
(
2 · 1(vij > 0, c∗ij = 1) − 1

)
. Note first that the

assumptions imply the distribution of v∗i ≡ (vij)j∈J is known. Note also that arg maxr∈R(Ci) v ·
pr = arg maxr∈R(J ) v

∗ · pr. Therefore, two beliefs p ≡ {prj}j∈J ,r∈R(J ) and p′ ≡ {p
′r
j }j∈J ,r∈R(J )

are behaviorally equivalent if and only if for all v ∈ RJ , arg maxr∈R(J ) v·pr = arg maxr∈R(J ) v·
p
′r. Let Cr(p) ≡ {v ∈ RJ |r = arg maxr∈R(J ) v · pr} for each r ∈ R(J ). Then, two beliefs p

and p′ are behaviorally equivalent if and only if Cr(p) = Cr(p′) for all r ∈ R(J ).
Proof under assumption (1): L = J = 2.

Implicitly condition on everything on zi. From Observation 1, it is straightforward to
verify that

(
Cr(p)

)
r∈R(J )

is pinned down by a single number δ ≡ p
(1)
1 −p

(2,1)
1

p
(2)
2 −p

(1,2)
2

.This can be

checked by noting that C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}, C(1)(p) = {(v1, v2) ∈ R2|v1 ≥
0, v2 ≤ 0}, C(2)(p) = {(v1, v2) ∈ R2|v1 ≤ 0, v2 ≥ 0}, C(1,2)(p) = {(v1, v2) ≥ 0|v2/v1 ≤ δ, },
and C(2,1)(p) = {(v1, v2) ≥ 0|v2/v1 ≥ δ}. By assumption, everyone (in the subgroup defined
by the observables) shares the common belief p = {prj}j∈J ,r∈R(J ) and therefore P({vi2/vi1 ≥
δ} ∩ {vi ≥ 0}) = P(vi ∈ C(2,1)(p)) = P(ri = (2, 1)). As P(vi ≤ v) is known, the left-hand
side of the equation is calculable as a function of δ. On the other hand, the right-hand side
is observable. Thus, belief is identified.
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Proof under assumption (2): L = 1.

By assumption, everyone has the same belief, which I denote by p. Note that C(j)(p) =

{v ∈ RJ |j = arg maxk∈0,1,...,J p
(k)
k vk} = {v ∈ RJ |j = arg maxk∈0,1,...,J

p
(k)
k

p
(1)
1

vk} for j = 1, . . . , J

and C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}. Thus, the Cr(p)′s are completely characterized by the
vector p̃ ≡ (p̃2, · · · , p̃J) ≡ (p2

p1
, . . . , pJ

p1
). Therefore, belief is identified if p̃ is identified.

I now claim that one can use Corollary 1 of Berry et al. (2013), denoted BGH. In their
notation, x = p̃, X ∗ = X = RJ−1++ , and σ(p̃) = (σ2(p̃), · · · , σJ(p̃)) : X ⊆ RJ−1 → RJ−1 where
σj(p̃) = P(vi∈C(j)(p̃))∑J

k=1 P(vi∈C(k)(p̃))
for j = 1, . . . , J . Note that the school j = 1 now plays the role of

BGH’s “outside option” (which is denoted j = 0 in their notation).58 To see that the corollary
applies, note first that X is a Cartesian product. Moreover, σj(p̃) is strictly decreasing in p̃k
for all j = {1, . . . , J} and for all k 6= 1, j, as (1)

∑J
k=1 P(vi ∈ C(k)(p̃)) is constant over p̃, and

(2) P(vi ∈ C(j)(p̃)) is strictly decreasing because vi has full support. Thus, BGH’s Corollary
1 applies and σ(p̃) is injective.

Proof of Proposition C.4 . I first prove case (i). Take any z ≡ (zv, zc, z−) such that zv ∈ RJ ,
zc ∈ RJ , and z− ∈ supp(z−i ). Then,

P
(
j ∈ ri ∀j = 1, · · · , J |zvi = zv, zci = zc, z−i = z−

)
= P(ṽi − zv > 0, c̃i − zc > 0|zv, zc, z−)

= P(ṽi > zv, c̃i > zc|z−)

= P(−ṽi < −zv,−c̃i < −zc|z−)

and since the first expression is observed for any zv ∈ RJ , zc ∈ RJ , and z− ∈ supp
(
z−i
)
, the

last expression is identified for any such (zv, zc, z−). Thus, the joint distribution of (−ṽi,−c̃i)
conditional on z−i , and therefore the joint distribution of (ṽi, c̃i) conditional on z−i , is identified
on the support of z−i . As vi = ṽi − zvi and ci = c̃i − zci with (ṽi, c̃i) |= (zvi , zci )|z−i and zi ≡
(zvi , z

c
i , z
−
i ) is observed, the joint distribution of (vi, ci) conditional on zi is identified for every

zi in its support.
58The outside option j = 0 as considered in my model is left out of the discussion here because their choice

probability does not change according to p.
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To show the first part of case (ii), note that

P
(
ri = ∅|zvi = zv, zci = zc, z−i = z−

)
= P(vij ≤ 0 or cij ≤ 0 ∀j ∈ J |zv, zc, z−)

= P(ṽij ≤ zvij or c̃ij < zcij ∀j ∈ J |z−)

Now, send all of the elements in zc to negative infinity. By the dominated convergence the-
orem, the last expression converges to P(ṽij ≤ zvij ∀j ∈ J |z−). Note that zvi is a special
regressor for vi with a large support. Use the special regressor similarly as before to identify
the distribution of vi. The second part of case (ii) follows similarly by sending all of the
elements in zv to negative infinity.

Proof of Proposition C.5. Proof of part (i) follows by noting that

P(ri includes no school among S(zi) |zi = z)

= P((vij)j∈S(zi) ≤ 0|zi = z)

= P(ṽij ≤ zvij ∀j ∈ S(zi)|zvi = zv, z−i = z−)

= P((ṽij)j∈S(zi) ≤ (zvj )j∈S(zi)|z−i = z−)

and using the independence of the special regressor to recover the distribution of (vij)j∈S(zi)|zi.
I now show part (ii). Take zi = z and A ⊆ S(z) with |A| ≤ L. Implicitly condition

everything on z. Note that for any two events A andB, P(A|B)P(B) ≤ P(A) ≤ P(A|B)P(B)+

P(Bc). Consider the events A = {vij ≤ 0 ∀j ∈ A} and B = {|ri| = L, ri ∩ A = ∅}c. One
can verify that P(A|B) = P(j /∈ ri ∀j ∈ A|B) using Observation 2. Further, note that P(j /∈
ri ∀j ∈ A|B) and P(B) is observable. Thus, P(A) ≡ P(vij ≤ 0 ∀j ∈ A) = P(ṽij ≤ zvij ∀j ∈ A)

is bounded within an interval of length P(Bc). One can then use the special regressor similarly
as before to bound P

(
(vij)j∈A ≤ x|z

)
.

C.5 Parametric Identification of Beliefs

Because nonparametric point-identification results are unavailable for the subjective beliefs
about probabilities of assignments, we give intuitive arguments about how each of the belief
parameters are identified.

Doubt parameter σν(zi) can be identified by the degree of truthtelling behavior. When
σν(zi)→∞ so that the applicant becomes completely doubtful of his assessment of the differ-

58



ence between cutoffs and his scores, his conditional probability of assignment qijk approaches
0.5 for every school j regardless of the rank k at which he puts the school on the list, in which
case it becomes optimal for him to truthtelly rank the considered schools that are preferred
to the outside option, until the maximum allowed list length is reached. But we can detect
truthtelling behavior in data; having identified the distribution of utilities and consideration
from earlier steps, and since truthful report is a function of utilities and consideration, we
know the counterfactual distribution of truthful reports.

Heterogeneity in bias among individuals, ση(zi), can be identified by unexplained variation
in reporting behavior among individuals with similar characteristics. The variation can be
generated by variance in vij and cij, but we already know those variances, and higher ση(zi)
will amplify the variation.

Pessimism bias µ(xj, zi) can be identified by riskiness of schools in the portfolios of stu-
dents with full lists. Higher pessimism for school j will tend to drive the conditional proba-
bility of acceptance to school j to zero, making it unlikely that the school is written in a full
list.

βrank = 0 will result in (1) truthfully ordered list if the list constraint does not bind,
and (2) strategically chosen portfolios when the list constraint does bind. That is, if the
constraint binds, it is possible that there are some unlisted considered schools that gives
higher utility than one of the listed schools. (This cannot happen if σν(zi) = ∞.) Even in
that case, however, among the chosen portfolio of the schools, schools will still be truthfully
ranked.

D Estimation: Details

D.1 Likelihood of Inclusion and the Score Moments

D.1.1 Log-likelihoods

Here we derive the the formula of likelihoods of school inclusions and discuss why the true
parameters maximize the likelihoods. The likelihoods that we consider are not standard in
the sense that (1) they select students with sij = 1 and (2) one of the likelihoods is weighted.
We show that the true parameters maximize the likelihoods despite being non-standard.

We first derive the formula of log-likelihood of inclusion of school j in the report of
applicant i. The log-likelihood reflects the identifying information in Observations 1 and 2.
It “selects” individuals with sij := 1(|ri\{j}| < 11) for the reasons explained in Section 7.1;
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from Lemma D.1 given that (εvij, ε
c
ij)j∈J is i.i.d across j, |ri\{j}| < 11 is independent of

(εvij, ε
c
ij) conditional on observables (xj, zi). Let ιij := 1(j ∈ ri) denote the random variable

indicating whether school j was included in the report ri. Let wij := 1(vij > 0)1(cij > 0) and
note that wij = ιij whenever sij = 1 following Observation 1. Let fw|z,s(·|z′, s′; θ) denote the
density of wij given zij = z′, sij = s′, and θ. Similarly define fι|z,s(·|z′, s′; θ) and fw|z(·|z′; θ).
We treat (xj)j as nonrandom. Then,

log ΠiΠj:sij=1fι|z,s(ιij|zij, 1; θ) (D.1)

= log ΠiΠj:sij=1fw|z,s(wij|zij, 1; θ)

= log ΠiΠj:sij=1fw|z(wij|zij; θ)

= log ΠiΠj:sij=1,j /∈Si
(
1− P(vij > 0|zij; θv)P(cij > 0|zij; θ)

)1−wij · · ·(
P(vij > 0|zij; θv)P(cij > 0|zij; θc)

)wij · · ·

Πj:j∈Si
(
1− P(vij > 0|zij; θv)

)1−wijP(vij > 0|zij; θv)wij

=
∑
i

[ ∑
j:sij=1,j /∈Si

[(
1− wij

)
log
(
1− Φ(−ψvij)Φ(−ψcij)

)
+ wij log

(
Φ(−ψvij)Φ(−ψcij)

)]
+

∑
j:sij=1,j∈Si

[
(1− wij) log

(
Φ(−ψvij)

)
+ wij log

(
Φ(−ψvij)

)]]

where Φ̄(·) := 1−Φ(·), ψvij := vij − εvij, ψcij := cij − εcij, θv denotes the preference parameters,
and θc denotes the consideration parameters. For notational convenience, the dependence of
ψvij on θv and the dependence of ψcij on θc are made implicit. The second equality comes from
sij = 1 being independent of (εvij, ε

c
ij) and therefore also of (vij, cij) conditional on observables.

We now show that the population version of the log-likelihood is maximized by the true
parameters θ0. Define

Q(θ) := Eθ0
∑
j:sij=1

log fι|z,s(ιij|zij, 1; θ) ≡ Eθ0
∑
j:sij=1

log fw|z(wij|zij; θ)

where both wij and zij are random variables. This is the population version of the log-
likelihood (Equation D.1) in the sense that

plim
n→∞

n−1 log ΠiΠj:sij=1fι|z,s(ιij|zij, 1; θ) = Q(θ)

where n denotes the number of students in the sample and with the understanding that in
the left-hand side (ιij, zij) are realized values.
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Now we show Q(θ0) ≥ Q(θ) for all θ. Note that

Eθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣zij]
=

fw|z(0|zij; θ)
fw|z(0|zij; θ0)

fw|z(0|zij; θ0) +
fw|z(1|zij; θ)
fw|z(1|zij; θ0)

fw|z(1|zij; θ0)

= 1. (D.2)

It follows that

Q(θ)−Q(θ0)

= Eθ0
∑
j

[
sij log fw|z(wij|zij; θ)− log fw|z(wij|zij; θ0)

]
=
∑
j

Eθ0

[
sij log

fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

]
=
∑
j

Eθ0

[
Eθ0

[
sij log

fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣sij, zij]]
=
∑
j

Eθ0

[
sijEθ0

[
log

fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣sij, zij]]
≤
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣sij, zij]]
=
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣zij]]
= 0

where the inequality holds by Jensen’s inequality, the penultimate inequality holds from
(cij, vij) |= sij|zij and therefore wij := 1(cij > 0)1(vij > 0) |= sij|zij, and the last equality holds
from Equation D.2.

As the sample size of (i, j) pairs such that i surely considers j is small relatively those
that do not have the sure-consideration relationship, in some specifications we weight the
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sure-consideration pairs. The weighted log-likelihood is

wNSC

∑
i

∑
j:sij=1,j /∈Si

[
(1− 1(j ∈ ri)) log

(
1− Φ(−ψvij)Φ(−ψcij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)Φ(−ψcij)

)]

+ wSC

∑
i

∑
j:sij=1,j∈Si

[
(1− 1(j ∈ ri)) log

(
Φ(−ψvij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)

)]

for some weights wNSC and wSC such that wNSC
∑

j /∈Si sij + wSC
∑

j∈Si sij =
∑

j∈J sij. That
is, the schools that are not surely considered are weighted by wNSC and those that are surely
considered are weighted by wSC.

The true parameters maximize the population version of the weighted likelihood. To
see this, suppose that (θv, θc) maximizes the weighted log-likelihood, where θv denotes the
preference parameters and the θc denotes the consideration parameters. Let θ0 := (θv0 , θ

c
0)

denote the true parameter. Suppose that θv 6= θv0 . Then, θv0 , θc0 gives larger value of the
weighted likelihood than does (θv, θc), which is a contradiction. Thus, θv = θv0 . Now, suppose
that θc 6= θc0. Because (θv0 , θ

c
0) gives larger value for the first part, and doesn’t have any

implication for the second part, this is another contradiction. The “scores” of the weighted
log-likelihood can be obtained analogously.

The corresponding likelihood scores for preference parameters are

∑
i

∑
j:sij=1

[
(1− 1(j ∈ Si))

(
(1− 1(j ∈ ri))

−φ(−ψvij)Φ(−ψcij)
1− Φ(−ψvij)Φ(−ψcij)

+ 1(j ∈ ri)
φ(−ψvij)
Φ(−ψvij)

)

+1(j ∈ Si)
(

(1− 1(j ∈ ri))
−φ(−ψvij)
Φ(−ψvij)

+ 1(j ∈ ri)
φ(−ψvij)
Φ(−ψvij)

)]
∂ψvij(θ

v)

∂θv

and the corresponding likelihood scores for consideration parameters are

∑
i

∑
j:sij=1

[
(1− 1(j ∈ Si))

(
(1− 1(j ∈ ri))

−φ(−ψcij)Φ(−ψvij)
1− Φ(−ψcij)Φ(−ψvij)

+ 1(j ∈ ri)
φ(−ψcij)
Φ(−ψcij)

)]
∂ψcij(θ

c)

∂θc
.

D.2 Simulated Ordering Moments

Implicitly condition on (xj)j∈J . Note that for any f : R → Rm,

0 = E
[
f(ri)− E[f(ri)|zi]

∣∣∣zi] = E
[
f(ri)− E[f(r(zi, ei; θ0))|zi]

∣∣∣zi]
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where ei denotes the vector of unobservables (εvi , ε
c
i , ηi), θ denotes the parameter vector,

θ0 denotes the true parameter vector, and r(zi, ei; θ) denotes the subjectively optimal report
under (zi, ei, θ) which is uniquely defined with probability 1. Section E describes the procedure
for simulating r(zi, ei; θ). It follows that

E

[(
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi])h(zi)

]
= E

[
E
[
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi]∣∣∣zi]h(zi)

]
= 0

where h(zi) may be a m−dimensional vector.
The sample equivalent of this condition is

1

I

∑
i

(
f(ri)− Esim[f(r(zi, ei; θ0))∣∣zi])h(zi) = 0 (D.3)

where in the brute-force version of simulation

Esim[f(r(zi, ei; θ0))∣∣zi] =
1

S

∑
s

f
(
r(zi, e

s
i ; θ0)

)
where the distribution of esi is completely governed by θ0 and not by zi due to independence.
We use a smoothed version of Esim

[
f
(
r(zi, ei; θ0)

)∣∣zi] following Ackerberg (2009).
The first type of simulated moments, given below, gives information about how individuals

order the schools:

E
[ 1

J

∑
j

(
1(j ∈ rki )− P

(
j ∈ rk(zi, ei; θ)

)
hj(zi)

]
= 0 ∀k = 1, . . . , 12

where rki is represents the report ri truncated up to the kth slot, rk(·) is the equivalent for
the simulated report, and the set inclusion notation is used towards rki and rk(·) with a slight
abuse. The condition uses f(ri) = 1

J

(
1(j ∈ rki )

)
j∈J in the notation of equation D.3. The

moment condition is implemented by

1

IJ

∑
i

∑
j

(
1(j ∈ rki )− Esim[1(j ∈ rk(zi, ei; θ))∣∣zi])hj(zi)
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and we use

h(zi) =
(
1, zij, (zij − z̄i), (zij − z̄i)2

)
j∈J .

Analogously, the second type of simulated moments give information about within-individual
ordering:

1

IJ(J − 1)

∑
i

∑
j

∑
j′ 6=j

(
1(j ∈ rki )1(j′ /∈ rki )− Esim[1(j ∈ rki,θ)1(j′ /∈ rki,θ)∣∣zi])(h(zij)− h(zij′)

)
where rki,θ := rk(zi, ei; θ).

D.3 Lemmas

Lemma D.1. The event |ri \{j}| < 11 is independent of (εcij, ε
v
ij) conditional on observables.

Proof. Fix the observables (x, z). We shall show that the event |ri \ {j}| < 11 is the same as
the event

∑
j′ 6=j 1{cij′ > 0, vij′ > 0} < 11. Being determined by only (εcij′ , ε

v
ij′)j′ 6=j (and ξj′),

the latter is independent of (εcij, ε
v
ij) as desired.

Note that

|ri \ {j}| < 11 iff |ri \ {j}| < 11 and |ri| < 12

iff
∑
j′ 6=j

1{cij′ > 0, vij′ > 0} < 11 and |ri| < 12

iff
∑
j′ 6=j

1{cij′ > 0, vij′ > 0} < 11.

The first equivalence holds because |ri \ {j}| < 11 implies |ri| < 12. The second equivalence
holds due to the first statement of Observation 1 (since |ri| < 12). For the last equiva-
lence, “only if” holds trivially. The “if” holds due to the second statement of Observation 1;∑

j′ 6=j 1{cij′ > 0, vij′ > 0} < 11 implies
∑

j∈J 1{cij > 0, vij > 0} < 12, which in turn implies
|ri| < 12 by Observation 1.
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E Simulating Subjectively Optimal Reports

Here we describe the procedure for obtaining the subjectively optimal reports59

r(zi, ei, θ) = arg max
r∈R(Ci)

J∑
j=0

prijvij (E.1)

where the distribution of (Ci, vij, prij)ij depends on θ. Note that

arg max
r∈R(Ci)

J∑
j=0

prijvij = arg max
r∈R(J+

i )

J∑
j=0

prijvij

where J +
i = {j ∈ Ci|vij > 0}, as students will never wish to list any school outside J +

i .
This problem is difficult to solve because as the size of a choice set, even after being

reduced toR(J +
i ), can be very large. For instance, with |J +

i | = 20, the choice setR(J +
i ) is all

possible ordered lists using the schools in J +
i which has as many as 20!/(20−12)! ' 6.03∗1013

elements. To make this problem solvable, we represent this problem as what resembles a finite-
horizon dynamic programming problem, where a period is a slot in the list and a state is the
set of schools already listed.

Let jk represent the school listed in the kth spot. Note prij = Πk−1
l=1 (1 − qijrl l)qijk. Let

K = min{12, |J +
i |}, which represents the last slot (or period) that the student optimally fills

in. Each student solves the following problem:

arg max
r∈R(J+

i )

J∑
j=0

prijvij

= max
{j1,··· ,jK}⊂J+

i

qij11vij1 + (1− qij11)qij22vij2 + · · ·+ (1− qij11) · · · (1− qij1111)qijKvijK

= max
{j1,··· ,jK}⊂J+

i

qij11vij1 + (1− qij11)
(
qij22vij2 + · · ·+ (1− qij22) · · · (1− qij1111)qijKvijK

)
.

We solve the problem backwards from the last school the student puts in the list. Let Jk =

{j1, · · · , jk}. Let

V i
K({j1, · · · , jK−1}) = max

j∈J+
i \JK−1

qijKvij

59We ignore ties in optimal reports as they occur with probability zero.
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and for 1 ≤ k < K, let

V i
k ({j1, · · · , jk−1}) = max

j∈J+
i \Jk−1

qijkvij + (1− qijk)V i
k+1({j1, · · · , jk−1, j}).

Then,

V i
1 = max

j∈J+
i

qij1vij + (1− qij1)V i
2 ({j}) = max

r∈R(J+
i )

J∑
j=0

prijvij,

which shows that the original problem may be solved via the dynamic formulation.
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