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fare in the US retail banking industry. The internet is expected to be a substitute for

bank branches as consumers can use more online banking and this effect can lead to

branch closures. On the other hand, the internet can be a complementary to branches

because consumers can more easily make deposits or open a new bank account on-

line when more high-speed internet is available which can expand markets, and in

turn, increase the number of bank branches. Observing the changes in the number

of rival bank branches after the change in the internet, banks can open or close more

branches. I estimate a dynamic branch opening-closure game in continuous time to

quantify these opposing effects. The results show that more internet connections can

cause consumer welfare loss due to branch closures when the internet penetration

is not sufficiently high. However, if internet connections are provided to more than

80% of households, consumers experience a welfare gain. The gains are especially

large in small and low-income markets.
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1 Introduction

With a few clicks, consumers can easily transfer their money between bank accounts

online. In 2016, 71% of consumers with a bank account used online banking to access

banking services (Board of Governors of the Federal Reserves System, 2016). As online

banking is expanding rapidly, banks are changing their strategy of opening and closing

branch offices. In 2015, J.P. Morgan Chase Bank decided to close 300 bank branches

over two years, or about 5 percent of the total, as the bank sought to cut costs with

more customers moving online (CBS News, 2015). This indicates that as consumers are

using more online banking, banks may be strategically shutting down their branches.

However, consumers can now open a new account without having to visit a branch,

which can expand the retail banking market. This could in turn increase bank profits

and could lead to the opening of more branches. This paper quantifies these opposing

effects that impact the number of bank branches and how this can change consumer

welfare.

Specifically, this paper examines the effect of the internet on the market structure

of the banking sector, as reflected by the total number of bank branches, as well the

internet’s effect on consumer welfare1. We can apply the same argument to other re-

tail industries that try to determine if online shopping is a complement or a substitute

for brick-and-mortar stores (Goolsbee, 2001; Deleersnyder et al, 2002; Biyalogorsky and

1We mainly focus on the effect of online banking since 61% of internet users are also online banking
users (2013 figure) (Fox, 2013). Online banking is replacing tasks that can be done in bank branches
– opening an account, making check deposits, transferring money, etc. The internet can also affect the
number of branches and a bank branch’s profit in other ways: (i) online shopping reduces the number of
visits to bank branches for cash withdrawals; (ii) consumers can access financial information online, so
they do not have to visit bank branches to ask bank tellers about how to make accounts, which asset to
invest in, etc.
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Naik, 2003; Gentzkow, 2007; Pozzi, 2013). Duch-Brown et al. (2015) argue that there

are two different effects associated with adding an online distribution channel – first,

the market expansion effect, which increases total sales, and second, the sales diversion

effect, which simply diverts sales from traditional sales. The internet makes it possi-

ble for consumers to open a new account more easily without having to visit branches,

which will lead to the market expansion effect. On the other hand, it is possible that

customers reduce visits to bank branches and switch to online banking which can lead

to decrease in profits from branches, which can be defined as the sales diversion effect

in retail banking industry.

However, the relationship between the internet (mainly online banking) and bank

branches is different from that of other online shopping and retail store chains in several

ways. Online banking does not require shipping or delivery from a local bank branch,

which means that online banking is not limited to certain geographical areas. This

implies the possibility that the market expansion effect in the banking industry could

be larger. In contrast, the substitutability between the online and offline channel can be

larger in the banking industry. The reason why consumers still use physical stores arises

from the fact that some goods are perishable, and there is a delay between actual order

and delivery. The online banking industry is free from these constraints. Consumers

can complete most banking tasks online and most transactions do not require delivery.

This suggests that the sales diversion effect may be larger. In addition to the market

expansion effect and diversion effect, I add another effect arising from the internet – the

competition effect. If the internet leads to more bank branch closures, it will encourage

other banks to open more branches. On the other hand, if the internet increases the
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number of bank branches, rival banks can shut down more branches. This effect will be

captured in the dynamic branch opening-closure game where banks decide to open or

close branches considering rival branches. In my paper, I quantify these three effects:

market expansion effect, sales diversion effect, and competition effect.

Before addressing my research question, it is important to first answer: Do we still

need branches if consumers are switching to online banking? The answer is yes. Bank

branches can be critical for small businesses and disadvantaged neighborhoods. Nguyen

(2019) finds that bank closings have a negative effect on local credit supply, and this effect

is concentrated in low-income and high-minority neighborhoods. FDIC’s recent survey

reports that 50.6% of households with high income (those that earn at least $75,000

annually) use online banking but only 38.0% of low-income households (those that earn

less than $15,000 annually) accessed their account using online banking as their primary

method of banking in 2017. (Federal Deposit Insurance Corporation, 2018)2 This fact

makes it crucial to understand the dynamics of branch closures caused by the internet.

In the paper, I develop a dynamic branch opening-closure game to examine how the

internet affects the number of bank branches and consumer welfare. To estimate the

model, I start by estimating the effect of the internet on bank profits by developing a

static oligopoly model for deposits. The static model includes a demand side, where

consumers choose which bank to make their deposits in, considering the high-speed

internet availability in the market. The supply side of the model determines the variable

profits for each bank. As the second step, a dynamic branch opening-closure game is

developed to estimate how bank profits affect the number of branches. I show that the

2Details are provided in Table 1.

4



internet decreases variable profits when high-speed internet is used in less than 80% of

households, leading to branch closures. However, when high-speed internet is available

to more than 80% of households, the direction of effects reverses, and the number of

branch increases.

This setting of a two-stage model on bank services relies on the previous works

of Ishii (2005) and Kuehn (2018). Ishii (2005) presents a model of ATM networks where

banks choose their size of ATM networks given their expectations about their rivals; then

banks select interest rates to maximize profits conditional on ATM networks. Kuehn

(2018) estimates a two-stage model with the first stage banks choosing their branch

network and the second stage consumers and banks maximizing their utility and profits,

respectively. My model is similar to their setting but is distinct in two features. First,

the first stage of the branch opening and closure game is performed in continuous time,

which better approximates the reality that banks open branches sequentially during

the year. Second, the online banking site quality and internet connections can affect a

consumer’s choice of a bank which, in turn, can affect banks’ profits and branch opening

and closure decisions. This feature can also explain consumers switching from visiting

branches to making deposits online.

This paper contributes to the literature in several ways. First, we study the effect of

the internet on market structure in the retail banking industry using a structural model

focusing on how the internet changes consumers’ behavior in choosing a bank as well

as banks’ behavior on setting the deposit rate and decisions on opening/closing bank

branches. Relative to other retail industries, there are no studies to my knowledge of

how the internet can change the banking industry. This paper sheds lights on how
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banks strategically open and close bank branches in the internet era.

Second, we estimate how this change in internet penetration and the number of

branches affect consumers by income group. The more high-speed internet available

in the area means that consumers can experience more branch closures, which is still

an important banking channel, especially in low-income areas. On the contrary, higher

internet penetration can lead more consumers to open a bank account, increasing con-

sumer welfare. I quantify each effect and find that consumers can experience welfare

loss while the internet penetration is increasing, but eventually, as the number of con-

sumers opening a bank account becomes higher and they can earn more welfare gains

when the internet penetration is more than 80%.

Third, I use a continuous time model that assumes that banks receive a chance to

open or close a bank branch stochastically. Because banks open their branches through-

out the year, this is closer to reality than assuming that all banks open their branches

simultaneously in the beginning of the year (which is assumed in a discrete-time model).

Blevins and Kim (2021) show that estimating a dynamic discrete game in discrete time

when the data is generated in continuous time causes a large bias from a model misspec-

ification. There exists an additional benefit of avoiding the curse of dimensionality in

the discrete time game by reducing the computational burden when computing expec-

tation for successor states (Doraszelski and Judd, 2012). To estimate the continuous-time

model, we apply the nested pseudo likelihood (NPL) estimator in continuous time to the

banking industry. The continuous time NPL estimator, introduced in Blevins and Kim

(2021), does not require consistent initial values, which results in better performance

than the previously introduced two step estimators. To the best of my knowledge, this
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is the first paper to apply the NPL estimator in a continuous time model.

In rest of this section, I review the literature relevant to my research question and

estimation method. Section 2 provides background on bank branches and online bank-

ing. In Section 3, I discuss the data set I used for estimation. In Section 4, I develop the

static demand model for deposits and present demand estimation results. In Section 5,

I establish a dynamic branch opening-closure game in continuous time for banks and

present estimation results with the introduction of the continuous time NPL estimator.

Section 6 concludes.

1.1 Related Literature

This section introduces two groups of previous literature relevant to my paper. The

first group of papers includes those that focus on the effect of the internet on brick-and-

mortar stores and those that develop models on deposits and bank branches. The second

group of papers is related to the estimation method that this paper uses to estimate the

dynamic branch opening-closure game.

Many studies have been carried out on how the online sales channel affects the offline

sales channel in various retail industry sectors. Goolsbee (2001) estimates the price sen-

sitivity of an individual’s choice of whether to buy a computer online versus in a retail

stores and finds that there is significant competition between the two channels. Deleer-

snyder et al. (2002) and Gentzkow (2007) both estimate the impact of an online channel

on the newspaper industry. The former study shows that the cannibalization effect of

online newspapers has been overstated. Gentzkow (2007) argues that print and online
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papers are substitutes, and firms could increase profits by charging a positive price for

online content. In contrast, Pozzi (2013) finds that selling online allows a supermarket

chain to expand its sales with a small displacement effect of brick-and-mortar sales. A

recent paper by Duch-Brown et al. (2015) asks whether the online distribution channel

has increased total sales or only diverted sales from traditional channels in the consumer

electronics industry.

Narrowing in on the banking industry, to the best of my knowledge, there is no paper

that discusses the effect of online banking on openings and closures of bank branch

offices using a structural model. However, there are some papers on the adoption of

online banking more generally. Allen et al. (2009) discusses the role that market structure

plays in affecting the diffusion of electronic banking in Canada. Xue et al. (2011) finds

that customers who adopt online banking significantly increase their banking activity,

acquire more products, and perform more transactions, leading to higher bank profits

in long-run.

This paper also takes into consideration papers that develop structural models on

bank branches. Cohen and Mazzeo (2007) develops an endogenous market structure

model in rural markets by bank type and finds that product differentiation generates

additional profits for retail depository institutions. Both Aguirregabiria et al. (2016) and

Clark et al. (2017) develop structural models of bank competition with interconnected

markets. Kuehn (2018) uses a two-stage model that in the first stage, banks decide the

branch network, and in the second stage, banks choose their deposit rate considering the

level of demand. In this paper, I also consider how banks choose the number of bank

branches in each market, but this paper differentiates from other papers by including
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the internet variable and changing the setting to continuous time.

This paper is also closely relates to papers that estimate structural models for de-

posits. Dick (2008) estimates a structural demand model for commercial bank deposit

services to measure the effects of US branching deregulation in the 1990s. Ishii (2005)

expands the static model and adds firms’ behavior in choosing the interest rate and the

ATM network size. In a more recent paper, Kuehn (2018) develops a two-stage model

with a model of demand for deposit services and a branch network choice model focus-

ing on the impact of multi-market banks on local competition after the deregulation in

the 1990s.

For the model estimation, I use the continuous time NPL estimator, which was in-

troduced in Blevins and Kim (2021). They change the discrete time setting of the NPL

estimator to continuous time, which was first introduced in discrete time by Aguirre-

gabiria and Mira (2002, 2007). Doraszelski and Judd (2012) introduced a continuous

time dynamic game in a theoretical model and Arcidiacono et al. (2016, henceforth,

ABBE) show an application of the two-step estimator in continuous time games. Blevins

(2016) presents theoretical, computational, and econometric properties of dynamic dis-

crete choice games and extends results from ABBE (2016).

2 Background and data

This section introduces some background knowledge on bank branches and online bank-

ing as there were some major changes in regulations on bank branching in the last two

decades. The latter part of the section presents the data that I use in estimating the effect
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of the internet on bank branches and consumer welfare.

2.1 Background

The number of bank branches had been increasing since the deregulation of bank branch-

ing in the 1970s but has been decreasing since the emergence of online banking in the

2000s. To determine the appropriate period to estimate the effect of the internet on

bank branches, I examine how the regulations of bank branches have changed and when

online banking become prevalent.

Before the deregulation of bank branching started in 1970s, both establishing a branch

within state borders (intrastate branching) and establishing a branch outside the main

bank’s home state (interstate branching) were prohibited. State governments were gain-

ing a large share of revenues from banking restrictions, which made them restrict branch-

ing locations, creating local monopolies to extract rents (Kroszner and Strahan, 2014).

Then, intrastate branching went through deregulation in the 1970s. Banks started to ex-

pand within states, which caused an upward trend in the number of branches, as shown

in Figure 1.

In the 1980s, some states started to deregulate interstate branching, and this resulted

in an increase in bank branches and a decrease in the number of banking institutions

as seen in Figure 1. The deregulation usually started from permitting banks to convert

subsidiary banks into branches. Then, the largest change in banking branch in the past

three decades was initiated with the Riegle-Neal Interstate Banking and Branching Effi-

ciency Act of 1994, which removed restrictions on interstate branching. Banks no longer
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had to establish a bank subsidiary to operate a branch in other states in order to circum-

vent state regulation. For example, J.P. Morgan Chase used to have subsidiaries in New

York, New Jersey, Connecticut, Delaware, Florida, and California, but they were merged

as one after the deregulation. After mergers between national banks and small bank

subsidiaries occurred, national banks started to own a large branch network throughout

the country.

Since then, opening a bank branch in a new location has become an essential part

of banks’ strategy to expand their markets. As seen in Figure 1, the number of bank

branches increased rapidly after deregulation, but the number of individual deposit

institutions has decreased. This implies that the market structure in the retail banking

industry has changed by bank branching. This trend was continued until the financial

crisis in 2008 when more than 300 banks failed (Lazette, 2017).

The trend in the number of bank branches has reversed in mid-2000s as online bank-

ing has been introduced and gained in popularity. Online banking has become an impor-

tant part of the retail banking industry, with banks adopting the strategy of using inter-

net banking to reduce their branch operating costs and expand their markets. However,

branches are still a popular method of banking for consumers, especially for low-income

households. Table 1 shows that nearly 40% of households with income lower than $30K

use a bank teller as their primary method to access bank accounts.

I now provide some background information on online banking. Online banking was

first introduced in the 1980s. Citibank, Chase Manhattan, Chemical Bank, and Manu-

facturers Hanover were the first four large banks that offered remote banking (Sarreal,

2017). In 1980, Bank One developed and tested one of the earliest online home banking
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Figure 1: The number of bank branches and institutions by year

Source: Federal Deposit Insurance Corporation (2017)

services called Channel 2000. In 1983, Chemical Bank introduced Pronto, the first major

full-fledged online banking service3. However, before the internet became commercial-

ized, online banking, often called home banking, required a special software that acted

as a barrier for consumers wanting adopt online banking.

In the early 1990s, the internet rapidly became commercialized, with online banking

expanding throughout the country and major banks starting to provide online banking

via the internet. In 1994, Bank of America launched their website bankofamerica.com4.

Wells Fargo allowed customers to access their accounts online starting in 1995
5. Bank

One, which merged with Chase in 2004, unveiled its prototype for their browser-based

3Chase Manhattan, Chemical Bank, and Bank One are precursors of J.P. Morgan Chase.
4Bank of America: https://about.bankofamerica.com/en-us/our-story/the-birth-of-mobile-\

banking.html (accessed 2019-08-01).
5Wells Fargo: https://www.wellsfargohistory.com/internet-banking/ (accessed 2019-08-01).
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Table 1: Primary method used to access bank accounts by family income (2017)

Family income Bank
teller

ATM
/Kiosk

Telephone
banking

Online
banking

Mobile
banking Other

All 24.3 19.9 2.9 36.0 15.6 0.7
Less than 15K 38.8 26 4.1 17.2 11.2 2.2
15K to 30K 38.0 24.5 4.3 19.4 11.7 1.5
30K to 50K 28.9 22.8 3.4 27.7 16.0 0.8
50k to 75K 23.3 18.7 3.0 38.0 15.8 0.4
At least 75K 13.3 15.5 1.8 50.6 17.9 0.2

Note: Each number is the percentage in each income category for all banked households
that accessed their account in the past 12 months.
Source: FDIC National Survey of Unbanked and Underbanked Households (2018).

internet delivery platform allowing customers to access their account information and

initiate banking transactions via the internet in 1998 (Bank One Corporation, 1998). By

2000, 80% of US banks offered online banking to their customers. In 2000, Wells Fargo

and BoA reported that they had 2.5 million and 3 million active online banking users,

respectively, rising to to 28.1 million and 34.9 million digital users including both online

users using the website and mobile users using the app, respectively, in 2017. Fox (2013)

reported that online banking users increased from 18% of adult internet users in 2000 to

61% in 2013.

2.2 Data

To examine the effect of the internet on the market structure and consumer welfare in

the retail banking industry, I use two major data sets—the Survey of Deposits, which

is a rich data set containing all the bank branches in the US, and the internet index

from the Federal Communication Commission (FCC), which is assigned according to

the percentage of households with high-speed internet. This section introduces each
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data set and additional data used in the model in detail.

First, I set a county as a market following previous studies in the banking industry

(Aguirregabiria et al., 2016; Clark et al., 2017). To estimate the effects of the internet

on bank branches, I utilize data on the number of branches, internet usage, and bank

characteristics – including online banking quality, deposit rate, and county-level market

characteristics. I focus on markets with populations below 250,000.

I use the list of bank branch offices in the US available from the FDIC. The Summary

of Deposits (SOD) survey is the annual survey of branch office deposits as of June 30

of each year for all FDIC-insured institutions (FDIC, 2017). Because all institutions with

branch offices are required to submit the survey, the data set consists of every branch

office that is insured by the FDIC (this covers all banks that offer deposits). The SOD

survey is available every year with branch locations, established date, and total deposits

for each bank branch office. Table 2 presents the largest banks in terms of the number of

branches and market share based on deposits.

Table 2: The number of bank branches of large banks

Bank #Branch Market share (%)

Wells Fargo 6,204 9.9
J.P. Morgan Chase 5,450 9.8
Bank of America 5,192 10.9

US Bank 3,161 2.5
PNC Bank 2,726 2.2

Note: Market share is calculated by dividing a bank’s de-
posits by total banking sector deposits, and the values are
the average values across years from 2010–2018.

The static oligopoly model for deposits includes every bank in the US. To focus more

on the nationwide branch network, I chose the five largest banks to estimate the bank
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branch opening-closure game. Thus, I focus on Wells Fargo, J.P. Morgan Chase, Bank

of America (BoA), US Bank, and PNC Bank in the analysis, which each had the largest

branch network over the data period.

Table 3: Form 477: county data on internet access services

Connections per 1,000 Households Index

0 0

0 < x ≤ 200 1

200 < x ≤ 400 2

400 < x ≤ 600 3

600 < x ≤ 800 4

800 < x 5

Note: Connections per 1,000 households refer to resi-
dential fixed high-speed connections over 200 kbps in
at least one direction per 1,000 households.

For the internet penetration variable, we use Form 477 with county data on internet

access services from the Federal Communications Commission (FCC). All facilities-based

broadband providers are required to submit Form 477 to the FCC twice a year on where

they offer internet access service at speeds exceeding 200 kbps in at least one direction.

The FCC provides an index (0∼5) that represents internet connections over 200 kbps

per 1,000 households using the criteria in Table 3. Although 200 kbps is slower than

the median speed experienced by subscribers of participating internet service providers

– which was 72 Mbps in 2017 (Jason Allen and Houde, 2018), this is known to be fast

enough for a single consumer’s online banking.6 I refer to this index as the “internet

index.” Table 2 presents how the distribution of the internet index shifted to right when

comparing the year 2010 to 2018. The average internet index has increased from 3.5 to

6Frontier, an internet service provider, states that 200 kbps is needed for online banking
(https://business.frontier.com/blog/how-much-bandwidth-does-my-business-need/, accessed: 2020-01-
20).
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Figure 2: Distribution of the internet index

Note: The figure shows how frequent each internet index appeared in all bank-market-year observations
for each year (in percent).

In addition to the internet index, I add a variable that captures the online banking

quality for each bank. Unfortunately, there is no exact data that measure the online bank-

ing quality for every bank in the US. Thus, I use search traffic to each bank’s website as a

proxy for online banking quality. Google does not disclose the website traffic generated

from searching keywords related to each bank. However, Spyfu, a private marketing

analysis company for search engine optimization (SEO) estimates the number of clicks

from keyword searches to specific website addresses. There are two types of search key-

words used in the search engine. First, organic keywords are keywords that drive free

traffic to websites. Second, pay-per-click (PPC) keywords are keywords that are bid by
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firms to place their website at the top of the search result page when searched by users.

In this paper, I only use clicks from organic key words because most PPC keyword clicks

are for credit cards, while the traffic into bank websites is mostly from organic keywords.

To collect the organic keyword clicks, I first collect each bank’s website address from the

SOD data set and search each website address on the Spyfu website7. Then, I gather the

estimated monthly organic keyword clicks and sum them to obtain yearly data. I use

the log of total website traffic as an index for each bank’s online banking quality.

In the demand model, I introduce a nested logit model dividing banks to into four

groups. The first group consists of the five largest banks, which I focus on in the dynamic

branch opening-closure game. The second group is a group of remaining national banks

that do not belong to the first group. In the third group, I include the community

banks. Community banks focus on providing traditional banking services in their local

communities (Federal Deposit Insurance Corporation, 2012). Specifically, community

banks are defined as banks with total assets less than an indexed-sized threshold, which

was $1 billion in 2010 and banks with loans-to-assets larger than 33% and core deposits-

to-assets larger than 50%. We follow the definition of the Federal Deposit Insurance

Corporation (2012) (a detailed definition is included in the first chapter of their study).

The last group includes all credit unions.

For the first three groups, I use data on bank characteristics from “Reports of Condi-

tion and Income,” which are referred to as “Call Reports” from the FDIC. Banks do not

provide branch-level interest rate data, so I follow the previous literature and calculate

the deposit and loan rates from the data. The deposit rates are computed by dividing the

7Spyfu: http://www.spyfu.com
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interest expense by the total amount of deposits, and the loan rates are calculated by di-

viding the interest income by the total amount of loans. This method assumes that banks

impose the same interest rate to all branches in their network, but this is reasonable as

many banks adopt uniform pricing strategy nationwide (Granja and Paixao, 2019).

Given that credit unions are not insured by the FDIC, I gather the characteristics of

credit unions from the National Credit Union Administration (NCUA). I use “Credit

Union Call Report Quarterly Data (Credit Union Call Reports),” which are analogous

to Call Reports from the FDIC. Because they do not release branch-level data, I assume

that credit unions have a single branch where the headquarters is located, following the

assumption in Ho and Ishii (2011) that each credit union is active in only a single market.

As aggregate deposit rates for each credit union are also not provided in the Credit

Union Call Reports, I calculate weighted average credit union deposits by multiplying

the rate on each type of deposit by the amount of that type of deposit as in Ho and Ishii

(2011). Credit Union Call Reports have a survey question asking whether banks have

home banking feature on their website. I use the number of credit unions that answered

“Yes” to this question, and use as a proxy that reflects the online banking quality for

credit unions.
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Table 4: Summary statistics (static model)

Group Variable Mean (S.D.)

All groups Deposit rate 0.256 (0.198)
Loan rate 2.491 (0.649)
#Branch 2.317 (2.040)

Internet index 3.913 (0.715)
Online banking quality 9.331 (6.359)

Nobs. 118,027

Group 1 Deposit rate 0.112 (0.062)
Five largest national banks Loan rate 2.060 (0.251)

#Branch 2.539 (2.161)
Internet index 3.900 (0.748)

Online banking quality 17.546 (1.483)
Nobs. 18,800

Group 2 Deposit rate 0.206 (0.163)
Other community banks Loan rate 2.296 (0.567)

#Branch 2.601 (2.422)
Internet index 3.981 (0.716)

Online banking quality 11.780 (5.243)
Nobs. 35,300

Group 3 Deposit rate 0.327 (0.213)
Community banks Loan rate 2.702 (0.473)

#Branch 2.194 (1.829)
Internet index 3.886 (0.697)

Online banking quality 6.535 (4.410)
Nobs. 53,891

Group 4 Deposit rate 0.315 (0.189)
Credit unions Loan rate 2.859 (1.285)

#Branch 1.556 (0.745)
Internet index 3.848 (0.724)

Online banking quality 0.346 (0.157)
Nobs. 10,036

Each value is the average across bank-market-year observations. The deposit rate and
the loan rate are in percent.

Table 4 presents summary statistics by group. I focus on 1,408 markets from 2010 to

2018, with 118,027 observations in total. The first section contains the summary statistics

for all banks and credit unions in the data set. The average deposit rate is 0.3% and the

loan rate is 2.5%, with banks having 2.3 branches on average. Comparing variables in
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each group, Group 1 has both the lowest deposit rate and loan rate. National banks in

Group 1 and 2 have more branches and are located in markets with a higher internet

index. In contrast, community banks and credit unions provide higher deposit rates and

are located in markets with less internet connections on average.

3 Static oligopoly model for deposits

The dynamic branch opening-closure game nests a static oligopoly model for deposits,

and I use two-step estimation to first estimate the static model and then estimate the dy-

namic game. The static oligopoly model for deposits examines the effect of the internet

on banks’ profits, while the dynamic branch opening-closure game estimates the effect

of the banks’ profits on the number of branches. In the nested static oligopoly model

for deposits, consumers choose which bank to make deposits considering their internet

availability. This model determines variable profits for each bank. Then, the second step

of the estimation is to estimate the dynamic branch opening-closure game, where major

banks compete with each other to open or close branches based on the variable profits

from the static model. In this section, I explain this framework in detail and introduce

the static oligopoly model for deposits with the estimation results.

3.1 Model framework

This section provides how the entire model framework works and how the two mod-

els – the static oligopoly model and the dynamic branch opening-closure game – are

connected. I also explain why I adopt a continuous-time setting by observing the data.

20



In the dynamic branch opening-closure game, banks choose to open or close a branch

given their expectations on variable profits from branches in continuous time. The vari-

able profits in the game are estimated in the static oligopoly model for deposits, where

consumers choose a bank to make a deposit and banks decide on the deposit rate to

maximize their variable profits. First, banks choose to open or close a branch given

their expectations on variable profits from branches in continuous time. In the static

oligopoly model for deposits, consumers choose a bank to make deposits, observing

the online banking service quality and the internet service available in their market. At

the same time, banks set the deposit rate to maximize their variable profits holding the

number of branches fixed.

A similar setting for the banking industry has been introduced in previous literature.

Ishii (2005) develops a similar two-stage model where banks choose their ATM networks

given their expectations about their rivals in the first stage, and they select interest rates

to maximize profits conditional on ATM networks in the second stage. Kuehn (2018)

similarly estimates a two-stage model, where in the first stage banks choose their branch

network, and in the second stage banks choose the deposit rate.

There are two distinct features in our model. First, consumers decide on a bank

based on online banking quality and the internet connection available in their market.

Specifically, the hypothesis is that consumers prefer banks with online banking quality.

Moreover, consumers in the markets with more high-speed internet connections will

prefer large banks with online banking feature available. At the same time, consumers

will get less utility from the number of branches when they have access to high-speed

internet because it means they can easily switch to online banking instead of making
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visits to bank tellers.

Second, banks open and close their branches in continuous time. I examine this

activity to construct a continuous time model. Continuous time models assume that state

variables change sequentially at any instant between time intervals, whereas discrete

time models only allow all state variables to change only once simultaneously. Therefore,

before establishing a model, researchers should observe the data to decide which model

can explain the data better. If a bank decides how many branches to open or close once a

year, it will be more applicable to use a discrete time model. However, if I observe bank

branches opening and closing throughout the year with irregular intervals, it means that

continuous time models will better approximate the dynamics.
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Figure 3: Number of bank branch openings by month

Note: Numbers are based on Wells Fargo, Chase Bank, BoA, US Bank, and PNC Bank branches established
in 2010–2018.

Figure 3 presents the number of five largest banks’ branch openings by month, which
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was aggregated from daily data. The model will be seriously misspecified if I assume

all branches open at the beginning of the year. Instead, it will be closer to reality if I

assume banks receive a chance to open or close a branch stochastically throughout the

year. Blevins and Kim (2021) present that estimating a discrete time model when the

data is generated in continuous time can lead to a large bias in estimates.

Moreover, Doraszelski and Judd (2012) show that continuous time models can be

simpler and computationally more tractable because they restrict the number of possible

state changes. In discrete time, every state variable must move at the same time so

if there are n state variables and each state variable can move to κ states, the number

of possible next states is κn. In contrast, continuous time models only allow one state

variable to move at an instant, so there are only κn possible states. This will reduce this

curse of dimensionality problem in discrete time models. I provide more details on state

changes in the next section.

3.2 Setting for static oligopoly model for deposits

In this section, I discuss the static oligopoly model for deposits that is nested in the dy-

namic branch opening-closure game. Banks are assumed to have the number of branches

fixed when they are deciding on the deposit rate. Consumers choose a bank to make

deposits that maximizes their utility given their own characteristics and bank character-

istics.

Demand side. I use a nested logit model to estimate the demand side of the static

oligopoly model for deposits. As mentioned in Section 2.2, there exist four groups.
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Group 1 refers to the five largest banks in terms of the number of branches, which will

be the focus of the branch opening and closure game. Group 2 is the group of national

banks that are not included in Group 2, and Group 3 is for the community banks. I

follow the definition of Corporation (2020) for the community banks. Lastly, Group 4

includes credit unions. Following Ishii (2005) and Ho and Ishii (2011), I take Group 4 as

a single choice as consumers usually have access to only a single credit union. Group 0

is the outside option, which I define as the choice of not having a bank or credit union

account.

For each market m and year t, I define consumer i’s utility function for making

deposits at bank b in the inside option. Consumer i chooses a bank to put all of their

deposits in a bank b from a choice set of banks b = 1, 2, . . . , Bmt available in their market

and year. Consumers prefer a higher deposit rate, DepR, which is different from other

discrete choice models with a negative effect of prices. This term is multiplied by the

market median income to capture the difference in deposit interest level. Given that a

consumer’s individual deposit data is not available, I use income as a proxy. Thus, the

coefficient on α can be interpreted as the multiplication of the deposit interest coefficient

and the ratio of income and deposit, α = α̃γmtmt denotes the deposit divided by the

income and α̃ is the true coefficient of the deposit level.

Consumers prefer a bank with a number of branches nearby, but this effect is ex-

pected to decrease as the number of branches increases, so I use the log of the number of

branches, log(Branch). When there is an expansion in internet connections, which will

be captured by internet, a consumer can choose to switch to online banking, which will

decrease the effect of a bank branch on their bank choice. Another important feature of
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a deposit institution to induce consumers is online banking quality, which is denoted by

Online and Website, respectively for banks and credit unions. Because banks and credit

unions have different measures of online banking quality, each online banking quality

variable is multiplied by the indicator for bank b being a bank or a credit union.

A consumer’s choice of making deposits is also affected by the high-speed internet

availability and their income. It is more likely that consumers opt in for the inside option

when they have high-speed internet in the market because it makes it more convenient

to open an account. As the Federal Deposit Insurance Corporation (2018) survey results

show, high-income households have a higher probability of holding a bank account.

Therefore, I define the utility function of consumer i choosing bank b’s deposit services

as below:

uibmt = αDepRbt × Incomemt + β1 log(Branchbmt) + β2Internetmt × log(Branchbmt)

+ β3Onlinebt × 1(Bankb) + β4Websitebt × 1(CreditUnionb)

+ β5Internetmt + β6 log(Incomemt) + ξbm + ξt + ξbmt + ςigmt + (1 − σ)εibmt

= δbmt + ςigmt + (1 − σ)εibmt

where ξbm and ξt are bank/market and year fixed effects, respectively. Unobserved

characteristics of bank b’s deposit services at market m in year t will be included in

ξbmt; for example, bank b’s marketing strategies or a bank teller’s ability to provide

financial information in a specific market m and year t. Consumer i’s group preference

for group g is denoted by ςigmt, and this variable is common to all banks in Group g and

has a distribution function that depends on σ, which is 0 ≤ σ ≤ 1 (Berry, 1994). The
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substitution within a group is captured by σ, and when σ is close to one, it means that

the within-group correlation is high.

Consumers can choose the outside option of not having a bank or credit union ac-

count. Since the percentage of unbanked consumers for each market is not known, I

use the percentage of unbanked households by income group presented in the Federal

Deposit Insurance Corporation (2018) to simulate the data. Specifically, for each market,

using the average income and its standard deviation from U.S. Census Bureau (2017)

data, I draw 200 incomes from the lognormal distribution. Then, I match each income to

the percentage of unbanked households in the Federal Deposit Insurance Corporation

(2018). I use the average simulated percentage of unbanked households and calculate

the market size using the deposit in each market. The utility of the outside option is

given as

ui0mt = δ0mt + ςi0mt + εi0m. (1)

I normalize the average utility of the outside option, δ0mt, to zero.

Using the market share inversion method in Berry (1994), given the utility functions

above, I derive an equation for market shares. Denoting market shares for bank b as sbmt,

ln(sbmt)− ln(s0mt) = αDepRbmt + X′
bmtβ + σ ln(s̄bmt|gmt) + ξbm + ξt + ξbmt + ε̃bmt, (2)

where Xbmt is a vector of variables in the utility function. The conditional market share

of bank b within group g is denoted as ln(s̄bmt|gmt) and ε̃bmt = εbmt − ε0mt.
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Supply side. Given the market shares from the demand side, banks choose a deposit

rate to maximize their aggregate profits from all markets each year. This is consistent

with the finding in Granja and Paixao (2019) that US banks price deposits almost uni-

formly across their branches. Following the previous literature (Kuehn, 2018), loan rates

are set to pay off the interest from deposits. Denoting Πbt as the aggregate profit of bank

b in year t, the profit function is as below:

Πbt = ∑
m

Πbmt = (LoanRbt − DepRbt − mcbt)∑
m

Depositmt ∗ sbmt (3)

Thus, the first order condition will be

∂Πbt
∂DepRbt

= −∑
m

Depositmt ∗ sbmt + (LoanRbt − DepRbt − mcbt)∑
m

Depositmt ∗
∂sbmt

∂DepRbt

mcbt = (LoanRbt − DepRbt)−
∑m Depositmt ∗ sbmt

∑m Depositmt ∗
∂sbmt

∂DepRbt

Solving the first order condition and the market shares estimated from the demand

side, I can calculate marginal costs for each bank. Using the estimated marginal costs, I

derive the variable profits for each bank in group 1, which I am interested in to observe

the branch opening and closure behavior in the dynamic branch opening-closure game.

3.3 Static oligopoly model results

I estimate and present the results from the static oligopoly model developed in the pre-

vious section. The results imply that the internet can substitute for bank branches in

that consumers’ preference towards branches decreases as there is more internet avail-
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able, but it also suggests that the internet can expand the market by inducing more

consumers to open more accounts.

Table 5 presents the demand estimation results in Column (1) and the first-stage

results of regressing the log of the group share on instruments and control variables in

Column (2). I use the average of opponents’ number of branches and deposit rates as

the instruments, which are usually referred to as BLP instruments (Berry et al., 1995).

Observing Column (1), the deposit interest positively affects the demand for deposits,

which is as expected. Consumers prefer banks providing higher deposit rates. The posi-

tive coefficient on the log(Branch) implies that consumers prefer many branches nearby,

but the effect decreases as the number of branches increases. The negative coefficient

on the interaction term between log(Branch) and Internet means that this effect also

decreases when the market has more internet connections, implying the substitution

between online banking and bank tellers by consumers.

Consumers prefer banks that provide better online banking quality implied by the

positive coefficient of the variable Online. This is also true for credit unions. If more

high-speed internet is available in the market, consumers prefer banks in the inside

option as the internet variable affects positively to the inside option utility. This is also

true for the income variable, where the positive coefficient shows that higher income

implies higher possibility of getting banked. The distribution parameter for the group

preference, σ, is significant and is between 0 and 1, which means that consumers tend to

switch more to banks within the same group than to banks outside the group.
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Table 5: Static oligopoly model for deposits estimation results

(1) (2)
log(sb/s0) log(sb|g)

log(sbmt|gmt) 0.0834
∗∗∗

(0.0121)
DepRbt × Incomemt 1.060

∗∗∗
0.450

∗∗∗

(0.0381) (0.0330)
log(Branchbmt) 1.084

∗∗∗
0.860

∗∗∗

(0.0314) (0.0238)
Internetmt × log(Branchbmt) -0.0718

∗∗∗ -0.0304
∗∗∗

(0.00609) (0.00448)
Onlinebt × 1(Bankb) 0.00174

∗
0.00307

∗∗∗

(0.000975) (0.000801)
Websitebt × 1(CreditUnionb) 0.902

∗∗∗ -0.0909
∗∗∗

(0.0648) (0.0182)
Internetmt 0.103

∗∗∗
0.0340

∗∗∗

(0.00768) (0.00579)
log(Incomemt) 0.332

∗∗∗ -0.115
∗∗∗

(0.0471) (0.0282)
BLP Deposit rate -0.412

∗∗∗

(0.0377)
(BLP Deposit rate)2

0.00204

(0.0417)
BLP log(Branch) -1.221

∗∗∗

(0.0313)
(BLP log(Branch))2

0.240
∗∗∗

(0.0139)
N 118027 118027

R2
0.922

F-stat 972.77

Values in parentheses are standard errors and ∗ p < 0.10, ∗∗ p <
0.05, ∗∗∗ p < 0.01. Includes bank/market fixed effects and year
fixed effects.

3.4 Linking static oligopoly model to dynamic branch opening-closure

game

The static oligopoly model yields the variable profits for each bank every year. Banks

will observe their variable profits and decide whether to open or close a branch, which
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will be modeled in the dynamic opening-closure game.

Next, how do variable profits change when the internet index increases? There can

exist multiple channels as to how the internet can change variable profits from branches.

First, it is more likely for consumers in the market with more internet connections avail-

able to open a new account more conveniently without needing to visit branches. Sec-

ond, consumers with access to the internet can easily switch from a bank branch to

online banking. Lastly, it is also possible that consumers can substitute for other banks

with a few clicks, even if they did not have branches in the market. The first channel will

increase the number of bank branches, and the second channel will decrease the number

of bank branches. The last channel can either increase or decrease the number of bank

branches.

I estimate the variable profits for each number of branches and observe that they

increase in most markets and bank groups. The results are presented in Table 6. Table 6

summarizes the percentage change in average variable profits across markets and years,

holding other control variables fixed. I increase the internet index by 1 and observe

how variable profits change. The results show that the five largest banks in the dynamic

branch opening-closure game, experience higher variable profits, which implies that

the effect from the first channel described in the previous paragraph is larger than the

other two channels. The effects can differ by demographics. In small and middle-sized

markets, the internet will lead to higher variable profits, and the same is also true for

low-income markets. However, in large and high-income markets, an increase in the

internet will decrease banks’ variable profits by as much as a 5% decrease on average.

In the following dynamic branch opening-closure game, banks decide whether to
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open or close a branch based on their expectation of variable profits from branches.

Therefore, if the internet penetration increases, banks will experience a gain in variable

profits in some markets and a loss in other markets, leading to changes in the number

of branches. In the next section, I examine in the detail the effect of variable profits from

branches on bank branch openings and closures in the dynamic branch opening-closure

game.

Table 6: Average change in variable profits after the increase in the internet index

Avg. % change
in variable profits

All banks By group
Group 1 Group 2 Group 3 Group 4

All markets 0.01 0.32 -0.29 0.05 0.30

By population
Less than 25000 0.30 0.44 0.25 0.26 0.30

25000∼50000 0.95 0.85 0.93 0.88 1.52

50000∼100000 0.49 0.29 0.31 0.60 0.97

More than 100000 -1.07 -0.14 -1.40 -1.03 -1.61

By income
Less than 40K 1.42 1.29 1.31 1.40 2.03

40K∼50K 1.36 0.70 1.30 1.54 1.85

50K∼75K -0.98 -0.28 -1.45 -0.88 -1.21

More than 75K -5.33 -1.03 -5.60 -6.40 -8.49

Each number is the average percentage change in variable profits after the internet index is
increased by 1 for markets with an internet index lower than 5.

4 Dynamic branch opening-closure game

In the previous section, I showed that the internet increases variable profits when there

is more high-speed internet available in the market. Next, to find out how the internet

affects bank branches, I need to estimate how variable profits affect banks’ decisions to

open or close a branch. To answer this question, this section introduces the dynamic
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branch opening-closure game for the five largest US banks. I introduce both the model

and the estimation method and then present the results as to how variable profits affect

banks’ decisions to open and close branches.

4.1 Setting for dynamic branch opening-closure game

Because the model is developed in a continuous time setting, it is different from discrete-

time models, so I introduce each element of the game in detail. Specifically, I introduce

a N-player dynamic discrete game in continuous time t ∈ [0, ∞). In the model, N banks,

denoted by b, receive a chance to move and choose their action j ∈ A. The choices can

be opening a new branch (j = 1), closing an existing branch (j = −1), or doing nothing

(j = 0).

State space. We assume that the state space X is finite and discrete. This means it is

possible to represent the state by a vector x ∈ X at any point of time t ∈ [0, ∞). I use

three state variables that change independently by banks. First, I include the number of

bank b’s branches, Branchbk, which moves according to bank b’s choice of action. Second,

there is the number of rivals’ branches, which is the total number of opponents’ branches

in the state.

Any state can be denoted as a 1× 3 vector, and I can index a state x by k ∈ N because

of a finite and discrete state space. Defining the rival branches, Rivalbk = ∑b′ ̸=b Branchb′k,

and MPbk as the marginal profits from the first branch averaged across banks in the

market,

xbk = (Branchbk, Rivalbk, MPk).
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Then, the state space X is a set of all combinations possible made by state variables.

X = {(0, 0, 0), (0, 1, 1), . . . , (max(Branchbk), max(Rivalbk), max(MPbk)}

It is useful to briefly explain the dimension reduction of variable profits in the state

vector in the game. Ideally, the state variables will be every variable that determines

variable profits. However, the demand model contains all banks, and I only focus on

the five banks in the game. Therefore, I assume that banks have information on the

transition of average marginal profits for the first branch in each market and know how

this variable will change throughout the time period. Then, I find a function for each

bank that can map the three state variables to variable profits using a polynomial LASSO,

which is described in detail in Appendix.

Vbmt = fb(Branchbmt, Rivalbmt, MPmt). (4)

Using the above method and discretizing the marginal profits, MPmt, into 50 states, I can

reduce the state space to 25 × 33 × 50 = 41, 250 states if I set the maximum number of

branches to 24 and the maximum number of rival branches to 32.

Poisson processes. In this section, I show how dynamics of states are governed by

Poisson processes. I start by defining the Poisson process8. Consider a situation where

there is a state jump at some time Tn and the next jump is at Tn+1. The state jump can

be a bank’s opening or closing a branch or any changes in other state variables, such as

8Definitions and notations are based on Schuette and Metzner (2009).
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an increase in the population. I call Tn as the nth event time and the difference between

two absolute times as inter-event time, where I denote as τn. Specifically, I consider a

following process:

Tn+1 = Tn + τn

where n ≥ 1 and T0 = 0.

I assume that the sequence of inter-event times {τn}n∈N is an independent and iden-

tically distributed sequence of exponential random variables with parameter λ > 0.

Then, the number of events up to some time t, denoted as N(t), follows the Poisson

distribution:

P[N(t) = s] =
(λt)s

s!
e−λt.

In the model, bank b receives a chance to move to another state according to a rate

parameter λb. By assuming λb = 1, I am assuming that bank b receives a chance to open

or close a branch once a year on average. The average number of openings and closures

is less than one for county-year observations, so this is not binding9. Given that the

Poisson process has the property of E[N(t)] = λt, the expected number of events during

a fixed period of time equals 1/λ. Second, other state variables change by another

Poisson process that can be characterized by |X | × |X | transition rate matrix. I present

the details on the transition rate matrix below.

Endogenous state changes. Once a bank receives a chance to move according to a

Poisson process, the state changes according to its decision. I assume that every bank

9Blevins (2016) suggests that if one sets the choice set to be {−1, 0, 1}, this implies that on average there
are at most 1/λ openings or closures, so that the researcher should set λ in order for this average not to
be binding.
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is a forward looking agent and discounts the future payoff with rate ρ ∈ (0, ∞). When

a bank receives a chance to move, bank b chooses to open a branch (j = 1), close a

branch (j = −1), or remain the same (j = 0). Thus, for example, when bank 1 chooses

j = 1 when there are Branchbk branches in the market, the number of bank b’s branches

increase by 1 to Branchbk + 1. I can state this formally using a state continuation function

l(b, j, k). The function l(b, j, k) denotes the next state after bank b makes its choice j at

current state k, so l(b, j, k) maps the choice and current state to the index of the next state

x′.

xl(b,j,k) =



(Branchbk + 1, Rivalbk, MPk ) if j = 1

(Branchbk − 1, Rivalbk, MPk) if j = −1

xk if j = 0.

Notice that other states remain the same as bank b moves, which is different from

a discrete time model where every change occurs simultaneously. I rule out the simul-

taneous moves by banks and nature because such an event is a zero-measure event in

continuous time.

Exogenous state changes. While banks choose the number of branches, nature

chooses to change the other state variable, MPk. When there is an increase in marginal

profits by 1, the state moves from (Branchbk, Rivalbk, MPk) to (Branchbk, Rivalbk, MPk + 1).

Given that the focus is on a continuous time model, I implicitly assume that the state

variables do not move simultaneously as mentioned above.

Transition rate matrix. The Poisson process is a type of continuous time Markov
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process, so it also shares the properties of Markov jump processes. It is known that a

finite-state Markov jump process can be characterized by a transition rate matrix, which

is also called an intensity matrix. This is the counterpart of the one-step transition

probability matrix in a discrete time model in that each component of the transition rate

matrix qkl represents the rate departing from k and arriving in state l. The difference is

that the transition rate is the transition rate for an instant instead of one period of time.

Therefore, when I define transition probability matrix over some small time interval h as

P(h), it can be written P(h) = I + Qh. Note that as h → 0, P(h) approaches the identity

matrix.

Then, for states k, l with k ̸= l. I have


P(xt+h = l|xt = k) = qklh

P(xt+h = k|xt = k) = 1 − ∑l ̸=k qklh

I can formally define the transition rate matrix Q:

Q =



q11 q12 q13 · · · q1K

q21 q22 q23 · · · q2K

...
...

... . . . ...

qK1 qK2 qK3 · · · qKK


where

qkl =


limh→0

Pr(xt+h=l|xt=k)
h for l ̸= k

−∑l ̸=k qkl otherwise.
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Now I apply the above to endogenous and exogenous state changes in my model.

For convenience, I index the nature by 0. First, if bank b receives an opportunity to

move by rate λ, bank b chooses action j by some possibility σbjk, where σbjk is the choice

probability of choosing j optimally in state k. Then, the hazard rate for state change from

k to l induced by choice j is λσbjk. So, each element qb,kl of transition rate matrix Qb for

bank b will be

qb,kl =



λσb,1,k if j = 1 (open)

λσb,−1,k if j = −1 (close)

−λ(σb,1,k + σb,−1,k) if j = 0 (do nothing)

0 otherwise.

.

For exogenous state changes, there will be a Poisson process governing the change

for the marginal profits for the first branch. I denote the transition rate matrix for the

nature changing exogenous state variables as Q0. I also assume that this variable moves

by 1 at an instant and the rates at which they increase or decrease are constant.

Payoffs. In continuous time models, flow payoffs and instantaneous choice-specific

payoffs can be explicitly distinguished. Bank b’s flow payoff is a function of variable

profits estimated from the demand model. Variable profits can be expressed with the

number of bank b’s branch offices Branchbk, the number of other banks’ branches, Rivalbk,

and the average marginal profits of the first variable profits, MPk, which is constant

across banks within the same market and year.
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Then the profit function becomes:

ub,kmt = θ0,b + θ1VPb,kmt + RegionFEmt

where VPb,kmt is calculated from Equation (4). The last term RegionFEmt is a census re-

gion effect to capture the difference between each banks’ tendency to concentrate branch

operation in certain regions.

I assume that opening costs to open a branch office has a deterministic component

and a stochastic component (Cosman, 2019). First, when bank b decides to open a

branch, it receives the deterministic instantaneous payoff, ψbjk, which is observed by

both bank b and the econometrician. I assume that the deterministic part of the opening

cost is a constant θ2. Second, bank b also receives a stochastic payoff εbjk, which is only

observed by bank b and is realized only when bank b receives a move opportunity. I

assume that εbjk follows i.i.d. Type I extreme distribution (0,1) for tractability.

ψbjk =


−θ2,b if j = 1 (open)

0 otherwise

The Bellman optimality and CCP representation. I now introduce the value func-

tion and equations for conditional choice probability (CCP). Bank b establishes its value

function based on expectations on nature and rivals’ moves and own move opportuni-

ties.

I follow the derivation of instantaneous Bellman equation in Blevins (2016). The
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probability of getting a move opportunity for a small increment of time is λh under the

Poisson process. The discount factor for time increment h is 1/(1 + ρh). I can write the

Bellman equation as follows:

Vbk(θ, σb) =
1

1 + ρbh

[
ubkh + ∑

l ̸=k
q0klh + λbkE max

j
{ψbjk + εbmjk + Vl(b,j,k)(θ, σb)}

+
(

1 − λbkh − ∑
l ̸=k

q0klh
)

Vbk(θ, σb) + o(h)
]
.

For a small amount of time h, bank b receives a flow payoff of ubkh, a value of Vbl if

the state changes by nature, a value of Vbk if bank b chooses j, and ψbjk + εbj + Vl(b,j,k)

if bank b chooses j after receiving a move opportunity. The last line accounts for the

situation where bank b does not receive a move opportunity or nature does not move

for time h. The last o(h) term accounts for when bank b receives more than two move

opportunities for time interval h. Henceforth, I assume that λbk = λ for b = 1, . . . , N and

k = 1, . . . , |X |. By rearranging and letting h → 0, I get a simpler form of the Bellman

equation:

Vbk(θ, σb) =
ubk + ∑l ̸=k q0klVl(θ, σb) + λE max{ψbjk + ϵbjk + Vl(b,j,k)(θ.σb)}

ρ + ∑l ̸=k q0kl + λ
.

ABBE (2016) show that one can express the value function as equation (1) below.

Vb(θ, σ) =
[
(ρ + λ)I − λΣb(σb)− Q0

]−1
[ub(θ) + λEb(θ, σ)] (5)

where Σb(σb) is a |X | × |X | state transition matrix induced by choice probabilities, and
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Eb(θ, σ) is a |X | × 1 vector where each element k is ∑j σbjk[ψbjk + ebjk(θ, σb)], where

ebjk(θ, σb) is the expected value of εbjk given that choice j is optimal,

1
σbjk

∫
εbjk · 1{εbj′k − εbjk ≤ ψbjk − ψbj′k + Vl(b,j,k)(θ, σb)− Vl(b,j′,k)(θ, σb) ∀j′} f (εk)dεk.

I now derive the conditional choice probabilities from the Bellman equation. A

Markov strategy δb is a best response if

δb(k, εb; θ, σb) = j ⇔ ψbj′k + εbj′k + Vl(b,j′,k)(θ, σb) ≥ ψbj′k + εbj′k + Vl(b,j′,k)(θ, σb) ∀j′ ∈ A.

Then, the conditional choice probability can be expressed as:

σbjk = Pr[δb(k, εb; θ, σb) = j|k]. (6)

Recall that εbjk follows T1EV(0,1), and following McFadden (1980), I can write the

conditional choice probabilities for each choice j as below:

σbjk =
exp(ψbjk + Vl(b,j,k))

∑j′ exp(ψbj′k + Vl(b,j′,k))
(7)

4.2 Continuous time NPL estimator

In this section, I introduce the continuous time nested pseudo likelihood (NPL) estima-

tor used to estimate the dynamic branch opening-closure game and present estimation

results.
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Policy iteration operator. I estimate the model using the nested pseudo likelihood

(NPL) method that was introduced in discrete time models by Aguirregabiria and Mira

(2002, 2007). I first redefine two equations for solving the opening-closure problem. I

define the conditional choice probability function as Γ. The first Bellman equation is

from Equation (5) and the second best response mapping is from Equation (6).

1. Bellman optimality

V(θ, σ) =
[
(ρ + λ)I − λΣ(σ)− Q0

]−1
[u(θ) + λE(θ, σ)] (8)

2. Conditional choice probability

Γ(v) ≡ σ (9)

where σ is a N(J − 1) ∗ |X | × 1 vector with σbjk = Pr[δb(k, εb; θ, σb) = j|k].

Now I can write the fixed point problem using a policy iteration operator Ψ. By sub-

stituting the first equation into the second equation, I can express in following equation:

σ = Ψ(θ, σ) ≡ Γ(V(θ, σ)) (10)

where σ is a N|X | × 1 vector that stacks the conditional choice probabilities for all states.

The vector of parameters and conditional choice probabilities that satisfy Equation (10)

are called the NPL fixed points.

Likelihood function. Consistent estimates for elements of nature’s transition rate

matrix, Q0, q = (q12, . . . , q|X |−1,|X |) can be obtained from transition data without having
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to solve the Markov decision model. Therefore, I assume that q is known and focus on

the estimation of θ = (θ0,1, . . . , θ0,N, θ1, θ2) and σ is a N|X |(J − 1)× 1 vector defined as

σ = (σ1,1,1, σ1,−1,2, . . . , σN,1,|X |, σ1,−1,1, . . . , σN,−1,|X |)

Consider the data set of state indices, {kmn, tmn; m = 1, . . . , M, n = 1, . . . , Tm} sampled

in time interval [0, T̄]. The time tmn is the time of n-th state change in market m and

the state kmn is the state immediately before state change at time tmn. I denote the time

interval between tm,n and tm,n+1 as τm,n. Figure 4 presents the structure of the data set.

The x-axis is the time of the state changes and the y-axis is the state index for each

market m and time tmn.

0 tmttm1 tm2 tm,Tmtm,Tm−1 T

kmt

τm1

τm2

τm,Tm

τm,Tm+1

· · ·

· · ·

Figure 4: The structure of the continuous time data

Given that the state changes according to the Poisson process, the time interval τ

follows the exponential distribution. Since the probability distribution function (pdf) of

the exponential distribution is f (x; λ̃) = λ̃ exp(−λ̃x), where λ̃ is the transition rate, the
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inter-event time τ is our model has the pdf

(

(
∑
l ̸=k

q0kl + λ ∑
j ̸=0

σbjk

)
exp

(
−τ

(
∑
l ̸=k

q0kl + λ ∑
j ̸=0

σbjk

))
(11)

, where ∑l ̸=k q0kl is the parameter rate for state changes by nature and λ ∑j ̸=0 σbjk is for

state changes due to agents’ actions.

Following the notation in ABBE (2016), I define h as a vector of hazard rates for state

change:

h = (q012, q013, . . . , q0,K−1,K, λσ111, λσ121, . . . , λσN,J,|X |).

First K(K − 1) terms are the transition rates for state changes by the nature and the rest

of NJ|X | terms are the transition rates for each agent. For simplicity, I denote

g(τ, k; h) = exp

(
−τ

(
∑
l ̸=k

q0kl + λ ∑
j ̸=0

σbjk

))
.

Then, I express the conditional probability of state changes conditional on that there

exists a state change as


λσbjk

∑l ̸=k q0kl+λ ∑j ̸=0 σbjk
due to agent b’s action j

q0kl
∑l ̸=k q0kl+λ ∑j ̸=0 σbjk

due to nature’s moves (l ̸= k).

(12)
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Then, the likelihood of each case is the product of Equation (11) and (12).


λσbjkg(τ, k; h) due to agent b’s action j

q0klg(τ, k; h) due to nature’s moves (l ̸= k).

(13)

I denote Imt(b, j) as the indicator function, which is 1 when bank b chooses action

j in market m at time t and 0 otherwise. Similarly, Imt(0, l) is 1 when nature changes

the state from kmn to l. Assuming that transition rates q for nature and λ is given, I can

express the log-likelihood function as a function of parameters θ and conditional choice

probabilities σ:

LM(θ, σ) =
1
M

M

∑
m=1

[
Tm

∑
n=1

{
ln g(τ, k; σ) + ∑

l ̸=kmn

Imn(0, l) ln qkmn,l + λ ∑
j ̸=0

Imn(b, j) ln σbjk

}

+ ln g(τm,Tm+1, km,Tm+1; σ)

]
. (14)

The first line is the log-likelihood of each state change from Equation (13), and the second

line is the log-likelihood that the state remains unchanged after the last event occurs.

Continuous-time NPL algorithm. I now introduce the continuous time NPL algo-

rithm. Let σ̂0 be an initial guess of the vector of players’ choice probabilities. Given σ̂0,

for l ≥ 1,

1. Given σ̂l−1, update θ̂ by

θ̂l = argmax
θ∈Θ

LM(θ, σ̂l−1)
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2. Update σ̂ using the equilibrium condition, i.e.

σ̂l = Ψ(θ̂l, σ̂l−1)

Iterate in l until convergence in σ and θ is reached. Consistency and asymptotic normal-

ity of the continuous-time NPL estimator is proven in Blevins and Kim (2021).

4.3 Dynamic branch opening-closure game results

In this section, the results for the dynamic branch opening-closure game are presented,

and the results imply that the variable profits lead to more bank branch openings.

For the estimation, I pre-estimate the transition rate matrix for nature, Q0, using a

frequency estimator and focus on estimating parameters in payoffs. The exogenous state

variable, the average variable profits, are discretized to indices from 1 to 50. Table 7

presents the results.

Different intercepts, θ0,b, account for the heterogeneity in profit functions for each

bank b. The positive sign on the coefficient for variable profits, θ1, shows that as there

is an increase in variable profits from branches, banks will open more branches. This

means that connecting to the previous static oligopoly model estimation results, if more

internet decreases variable profits, it will also induce branch closures because variable

profits have a positive relationship with the number of branches.

The implied opening costs of a branch is $5.17M, which can be calculated by dividing

opening costs (θ2 by the coefficient of variable profits (θ1), 6.4427/1.2451. Bancography

(2019) surveyed banks and credit unions about the average cost of building a branch.
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The results show that the average land cost is $750,000 and the average construction cost

is $2.1M. This is lower than what I have estimated, but their survey excluded national

banks, so the estimated opening costs for the five largest banks would undoubtedly be

higher. Moreover, the opening costs estimated in the model also include unobservable

entry barriers in the markets.

Table 7: Dynamic branch opening-closure game estimation results

Variables Estimates (s.e.)

θ0,1 0.6568 (0.0235)
θ0,2 0.6249 (0.0227)
θ0,3 0.2754 (0.0282)
θ0,4 0.6917 (0.0211)
θ0,5 0.7249 (0.0205)
θ1 1.2451 (0.0681)

RegionFE1 -0.1527 (0.0489)
RegionFE2 -0.0733 (0.0183)
RegionFE3 0.0333 (0.0170)

θ2 6.4427 (0.0809)

Values in parentheses are standard er-
rors.

5 Counterfactuals: Higher internet penetration

This section answers the research question by quantifying the effect of the increase in

high-speed internet penetration. I use the dynamic branch opening-closure game to

predict the number of branches when there is more internet available, and I use the

static oligopoly model to estimate the effect of this change in the number of branches on

consumer welfare.
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5.1 Effects on the number of branches

Banks close bank branches when the internet is available to less than 80% of households,

but they open more when the internet is available to more than 80% of households. This

section elaborates on how I run counterfactuals and presents the results.

A new data set is constructed by increasing the internet index to at least 3, 4, or 5 for

every market. Then, I recalculate the market shares using the estimated demand model

parameters from the static oligopoly model for deposits, which will in turn change vari-

able profits of branches. Using the estimated choice probabilities, I simulate 20 paths

starting from the new initial state with increases in the internet index.

Table 8 present the average number of bank branches after the increase in the internet

index. The first column is the average number of branches in the actual data set, and

the second column is the number of branches implied by the model in 2018. The last

three columns are results from the counterfactuals when the internet index is increased.

Overall, banks are expected to build less banks until the internet index equals 4, but

the number of branches bounces back to 3.53 when the internet index becomes 5. This

implies that the market expansion effect of the internet (which means the effect of en-

couraging more consumers to open accounts) starts to dominate the substitution effect

when the internet is available to more than 80% of households.

The effects can be different based on demographics. The second part of Table 8 di-

vides the market by population. In 2018, when the minimum internet index is increased

to 4 in the small markets with populations less than 25,000, 20% of branches will be

closed, but it will increase by 0.3% when the high-speed internet is available to more
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than 80% of households. The mid-sized markets are similar in the change in the number

of branches. However, in larger markets, they experience less dramatic changes in the

number of branches.

The bottom part of Table 8 shows the results by income group. The results are similar

to above. It is shown that low-income markets experience more branch closures after the

increase in the internet, and they increase again when there are sufficient internet con-

nections available. Mid- and high-income markets also experience bank branch closures

as the internet index increases, but the change is less than the change in low-income

markets.
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Table 8: Average number of bank branches after the internet increase

Average #Branches Actual Model Counterfactuals
Internet≥3 Internet≥4 Internet≥5

All markets 3.475 3.530 3.520 3.131 3.530

(-0.263) (-11.295) (-0.003)

By population
Less than 25000 1.401 1.712 1.737 1.363 1.716

(1.486) (-20.356) (0.263)
25000∼50000 1.985 2.539 2.530 2.040 2.524

(-0.347) (-19.641) (-0.608)
50000∼100000 3.122 3.371 3.359 2.871 3.392

(-0.355) (-14.833) (0.641)
More than 100000 7.811 6.857 6.810 6.596 6.850

(-0.697) (-3.807) (-0.105)

By income
Less than 40K 2.193 2.655 2.663 2.141 2.640

(0.289) (-19.370) (-0.578)
40K∼50K 3.078 3.269 3.259 2.863 3.270

(-0.300) (-12.420) (0.044)
50K∼75K 4.334 4.089 4.051 3.767 4.086

(-0.930) (-7.874) (-0.079)
More than 75K 6.891 5.950 6.075 5.587 6.024

(2.101) (-6.102) (1.242)

Values in parentheses are the percentage change in the average number of bank
branches compared to the model implied number of bank branches.

5.2 Effects on consumer welfare

Both the change in the internet availability and the number of branches will affect the

welfare of consumers in retail banking. Using the new number of branches from the

previous section, I estimate the welfare gain and loss from the increase in the internet

index.

The decrease in the number of branches due to more internet availability in the mar-

ket does not necessarily mean that consumers will loose welfare because more internet
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means that consumers can reach out to more banks that do not have branches nearby. I

show the welfare analysis results below. The change in compensation variation is com-

puted as the change in expected maximum utility, scaled up to a dollar value by dividing

by the marginal utility of income (Rosen, 1988). The value from the current status is de-

noted as Vbmt and the new value after the increase in the internet penetration is denoted

as Vinternet
bmt

E(CVmt) =

ln
(

∑g

(
∑b∈g exp (Vbmt/(1 − σ))

)(1−σ)
)
− ln

(
∑g

(
∑b∈g exp

(
Vinternet

bmt /(1 − σ)
))(1−σ)

)
α/γmt

,

(15)

where γmt = Depositmt/Incomemt. The marginal utility of income is calculated by divid-

ing the coefficient of the deposit interest in utility function by the ratio of deposits and

income. The derivation of the compensation variation is presented in detail in the Ap-

pendix. The compensation variation for each market is then calculated by multiplying

individual compensation variation by market size.

The consumer surplus change is the negative value of compensation variation, which

is presented in Table 9. The consumer surplus change is based on the consumer welfare

implied by the model in 2018. The first line shows the average consumer surplus change

per capita when the minimum internet index increases to 3, 4, and 5. When the inter-

net index increases to 4, consumers experience welfare loss due to the branch closures.

However, when the internet increases to 5, consumer surplus is positively affected by the

internet. This is because consumer utility is affected in two ways when the internet index

increases: first, the internet index accelerates branch closures, thus decreasing consumer
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surplus, and second, the high-speed internet allows more consumers to open bank ac-

counts, increasing consumer surplus. So, when the internet index increases to 5, which

is equivalent to more than 80% of households having high-speed internet, consumers

experience a gain from the internet increase.

The effect on consumer surplus is heterogeneous across markets by population and

income. Small markets, which are more likely to have a lower internet index, show pos-

itive consumer surplus change as the internet increases. Mid-range markets experience

similar effects as the effects on all markets, but they lose more welfare by the branch

closures. In large markets, a higher internet index does not necessarily mean welfare

gain because they already had higher internet at the start of the data period.

Table 9: Consumer surplus change after the internet increase

Internet≥3 Internet≥4 Internet≥5

All markets 14 -118 605

By population
Less than 25,000 34 -158 1415

25,000∼50,000 -3 -112 637

50,000∼100,000 6 -106 215

More than 100,000 19 -93 50

By income
Less than 40K 21 -146 794

40K∼50K 16 -94 793

50K∼75K 6 -134 315

More than 75K 28 -99 38

Each number is the average consumer surplus change divided
by the population. The value is in US dollars.
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6 Conclusion

This paper examines the effect of the internet on market structure reflected by the num-

ber of bank branches in the market and on consumer welfare in the US retail banking

industry. I developed a dynamic branch opening-closure game nesting a static oligopoly

model for deposits to estimate the effect of internet penetration on bank profits and how

this change in bank profits affect banks’ decision to open and close branches.

The estimation results imply that more internet connections increase bank profits in

relatively small markets but decrease profits in larger markets. The counterfactuals for

the increase in high-speed internet connections show that the number of branches de-

crease when high-speed internet is available to less than 80% of households but increase

back to original levels when the internet penetration rises to 80%. The decrease in the

number of branches resulting from an increase in internet usage is more evident in small

and low-income markets.

Moreover, the welfare analysis results imply that more internet connections can cause

consumer welfare loss due to branch closures when the internet penetration is not high

enough. However, if internet connections are provided to more than 80% of households,

consumers experience welfare gains. The welfare gains are especially large gains in small

and low-income markets.

The effect of the internet on the number of bank branches should be carefully in-

terpreted considering various effects of the internet on bank branches and consumer

welfare. As internet connections increase, consumers can experience welfare loss due to

bank branch closures. This can be prevented by bank regulations to slow down branch

52



closures that arise from banks’ efforts to cut branch operating costs using new tech-

nology. Eventually, more high-speed internet connections will replace bank branches,

inducing consumers to open more accounts resulting in welfare gains in the long run.
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A Dimension reduction for dynamic branch opening-closure

game

In this section, I report the result of the dimension reduction in variable profits intro-

duced in Section 4.1.

To keep the state space size feasible to estimate, I use the Polynomial LASSO to

reduce the dimension of related variables. Specifically, I regress variable profits on poly-

nomials of three state variables, including bank b’s number of branches, number of rival

branches, and the marginal profits from the first branch in the market. The estimation

results for the equation 4 are repeated below for convenience.

Vbmt = fb(Branchbmt, Rivalbmt, MPmt). (4)

59



Table 10: Dimension reduction for variable profits results

Bank 1 Bank 2 Bank 3

Variables Estimates Variables Estimates Variables Estimates

Branch -0.0006 Branch2 -0.0007 Branch2 -0.0006

Branch2
0.0000 Branch1/2

0.1717 Branch3
0.0000

Branch3
0.1963 Rival2 0.0002 Branch1/2

0.1685

Branch1/2
0.0002 Rival3 0.0000 Rival2 0.0002

Rival2 -0.0191 Rival1/2 -0.0116 Rival3 0.0000

Rival1/2 -1.4674 MP 0.6827 Rival1/2 -0.0153

MP 0.8864 MP3
0.4244 MP 0.3830

MP3
2.3308 MP1/2

0.3789 MP3
0.5034

MP × Branch 0.0888 MP × Branch 0.0905 MP1/2
0.4543

MP × Rival -0.0277 MP × Rival -0.0333 MP × Branch 0.0862

Branch × Rival -0.0004 Branch × Rival -0.0005 MP × Rival -0.0283

MP × Branch × Rival -0.0009 MP × Branch × Rival -0.0003 Branch × Rival -0.0004

constant -0.7328 constant -0.3131 MP × Branch × Rival -0.0006

constant -0.2751

R-squared 0.3387 R-squared 0.5785 R-squared 0.4712

Lambda 2642.8 Lambda 7407.6166 Lambda 7002.3

Bank 4 Bank 5

Variables Estimates Variables Estimates

Branch2 -0.0006 Branch2 -0.0005

Branch3
0.0000 Branch3

0.0000

Branch1/2
0.1486 Branch1/2

0.1104

Rival2 0.0003 Rival2 0.0002

Rival3 0.0000 Rival1/2 -0.0205

Rival1/2 -0.0238 MP 0.9403

MP 0.1050 MP3 -0.4144

MP3
0.0509 MP1/2

0.0652

MP1/2
0.8902 MP × Branch 0.0754

MP × Branch 0.0788 MP × Rival -0.0195

MP × Rival -0.0241 Branch × Rival -0.0002

Branch × Rival -0.0003 MP × Branch × Rival -0.0010

MP × Branch × Rival -0.0010 constant -0.2051

constant -0.3947

R-squared 0.4593 R-squared 0.3864

Lambda 6031.1 Lambda 4797.6
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B Compensation variation

This section provides more details on deriving compensation variation used in Sec-

tion 5.2.

In the demand model in the static oligopoly model for deposits, one can rewrite the

consumer i’s utility function, including the budget constraint, as follows.

max uibmt = αDepRbt × Incomemt + X′
bmtβ + ςigmt + (1 − σ)εibmt

s.t. zmt = Incomem + DepRbtγmt × Incomemt,

where γmt is the ratio of deposit and income and zmt is a numeraire. Let uibmt = Vbmt +

εibmt and CV be the compensation variation for the internet index increase. Then, the

compensation variation, CV, should solve

∑
b

max
(

α

γmt
(Incomemt + CVbmt + DepRbtγmtIncomemt) + X ′

bmtβ + ςigmt + (1 − σ)εibmt

)
= ∑

b
max

(
α

γmt
(Incomemt + DepRbtγmtIncomemt) + XInternet

bmt β + ςigmt + (1 − σ)εibmt

)
,

where XInternet
bmt is the state variables after the internet index increase.

The derivation above implicitly imposes two additional assumptions. First, I as-

sume that log(Incomemt) in Xmt does not significantly affect the deposit amount after the

change in the internet index and the number of branches. The variable log(Incomemt) is

included in the utility function to capture that higher income consumers are more likely

to have a bank account, so it does not necessarily affect the budget constraint directly.
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Second, the proportion of income used to make deposits, γmt, is constant for all con-

sumers and banks within a market and a year. This allows us to use the log-sum form

of values as only the unobservable part includes the variation among consumers.

Assuming ςigmt + (1 − σ)εibmt follows T1EV, the compensation variation becomes

Equation (15).

E(CV) =

ln
(

∑g

(
∑b∈g exp (Vbmt/(1 − σ))

)(1−σ)
)
− ln

(
∑g

(
∑b∈g exp

(
Vinternet

bmt /(1 − σ)
))(1−σ)

)
α/γmt

(15)
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