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Abstract

This paper formulates a model of optimal information acquisition, by developing a
dynamic structural model with observation and adjustment costs. It then applies the
empirical framework to medical testing in which a medical provider must balance the
competing goals of making informed treatment decisions and saving testing costs for a
diabetic patient’s health. The novel feature of the model is that the state, a patient’s
blood sugar level, is not precisely observed by a provider. If she chooses not to pay an
observation cost for medical testing, the true state remains unobserved and the following
treatment adjustments may be inaccurate. I combine the dynamic structural model with
confidential administrative data on patient health from universal health screening and
testing decisions. I find that the higher cost of blood sugar testing leads to blood sugar
levels that are more dispersed over time through ill-informed prescription adjustments.
Counterfactual exercises show that performing an A1C test, the state-of-art method of
blood sugar testing, every six months is the most cost-effective diabetes management
considering its monetary costs and health benefits, with an additional cost of $11,018.66
for one extra quality-adjusted life-year.
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1 Introduction

An economic agent often chooses to acquire information to resolve uncertainty. However, s/he
may not always find it cost-efficient to obtain too much information. This paper formulates
a model of optimal information acquisition, by developing a dynamic structural model with
observation and adjustment costs. It then applies the empirical framework to medical testing
in which a medical provider must balance the competing goals of making informed treatment
decisions and saving testing costs. The novel feature of the model is that the state, patient
health status, is not precisely observed by a provider. If she chooses not to pay an observation
cost for medical testing, the true state remains unobserved and the following treatment adjust-
ments may be inaccurate. It describes an economic mechanism of how a provider’s endogenous
testing decisions affect the patient’s health status.

To empirically analyze the trade-off, I combine the dynamic structural model with confiden-
tial administrative data on diabetic patients’ health and providers’ testing decisions. Diabetes
is an ideal example of information acquisition. A patient’s blood sugar level is not only his/her
health status a provider would like to control, but the information acquired through a blood
test. Korean National Health Insurance beneficiaries’ data consist of universal health screening
data linked with medical claims data; blood sugar levels, and testing and prescription choices
are observed. Diabetes is also one of the most widespread diseases requiring regular attention.
Four hundred twenty-two million adults are estimated to live with diabetes, and 3.7 million
annual deaths are caused by high blood glucose worldwide (World Health Organization, 2016).
Since high blood sugar levels lead to many complications, including heart attacks, strokes, kid-
ney failure, and blindness, it is important to monitor glucose levels properly through a blood
test and adjust prescriptions whenever needed.

I first document substantial heterogeneity in blood glucose levels and testing frequency. Al-
though an A1C test that monitors patients’ average glucose levels represents “effective care,” its
frequency is highly heterogeneous across providers. Providers causing an additional dispersion
of a patient’s blood sugar level over time tend to under-test, compared with clinical guidelines.

Based on reduced-form evidence, I develop a dynamic structural model with observation
and adjustment costs (Alvarez, Lippi and Paciello, 2011; Alvarez, Guiso and Lippi, 2012). The
model features two choices—observation through medical testing and prescription adjustments.
A medical provider would like to keep a patient’s blood sugar level around the target over his/her
lifetime by making observations and adjustment choices each period. A provider facing the
trade-off optimally decides whether to perform the medical test. Observing the true state of the
patient, the blood glucose level, is helpful with not only checking whether current prescriptions
are working properly, but having a better prediction of the state in the future. However, a
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fixed cost of observation must be incurred for the blood test. Without the test, she observes
a noisy signal. Once the observation decision is made, she forms the best prediction using all
test results and noisy signals she has ever observed. Based on the prediction of the state, she
then optimally chooses whether to adjust existing prescriptions to keep the blood sugar levels
under control. A fixed cost of adjustment must be paid whenever prescriptions become more
or less aggressive than the previous one.

The model rationalizes interesting distributional and dynamic features of the data. First,
prescription adjustments are not necessarily toward the target level if not accompanied by
preceding observation choice. This is the economic mechanism in which a large observation cost
leads to an additional dispersion of blood sugar levels over time, deteriorating patient health.
Second, the belief on the state contains both state- and time-dependent components (Alvarez,
Lippi and Passadore, 2017). The Kalman filter estimate describing the best prediction of the
state reflects the true state, through signals she has received. However, under the normality
assumption, its prediction error is purely a function of the agent’s past observation choices, and
it increases if not tested. The time- and state-dependent components rationalize the provider’s
tendency to perform a test regularly to keep the prediction error small and the situation in
which a medical provider confirms her belief through medical testing whenever she believes the
state is far from the target. I provide empirical evidence that supports the model implications.

I structurally estimate the model using data on blood sugar levels, testing, and prescrip-
tion adjustments. Based on observation and adjustment frequencies, identifying two fixed
cost components (Alvarez, Lippi and Paciello, 2011), I exploit patient moves in the matched
provider-patient data to cluster patient and provider types simultaneously, to account for
provider/patient heterogeneity. I then estimate structural parameters of interest for each
combination of patient and provider types. Structural estimates suggest that heterogeneous
frequencies are attributable to both provider and patient factors, and the fixed costs of obser-
vation substantially differ across both provider and patient types. Fixed costs of adjustment,
however, are largely different across patient types They suggest a substantial portion of patients
are reluctant to receive a blood test and take a new set of medications, and a large number of
providers are unwilling to order the newly employed A1C test for diabetes management. I also
find that prescription choices without medical testing are inaccurate across all combinations of
patient-provider pairs. As a patient’s blood sugar levels fluctuate highly over time, past test
results quickly become uninformative.

Using the structural model, I conduct a counterfactual exercise to quantify the value of med-
ical testing by making it mandatory. I find that performing an A1C test every six months is the
most cost-effective diabetes care considering both health outcome improvements and monetary
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cost of testing: with an incremental cost-effectiveness ratio of $11,018.66 per quality-adjusted
life-year (QALY), far lower than the $100,000 threshold. It confirms current clinical guidelines
that the A1C test must be performed at least twice a year from an economic perspective. It also
indicates that current quality measures that count annual A1C testing rates are not sufficient;
one may consider biannual testing rates for proper quality assessment instead.

This paper relates to two literature strands. First, it contributes to literature on costly in-
formation acquisition, including rational inattention (Sims, 2003; Alvarez, Lippi and Paciello,
2011; Alvarez, Guiso and Lippi, 2012; Matějka and McKay, 2015; Steiner, Stewart and Matějka,
2017; Joo, 2020), search and consideration set models (Hortaçsu and Syverson, 2004; Hong and
Shum, 2006; De los Santos, Hortaçsu and Wildenbeest, 2012; Honka, 2014; Honka, Hortaçsu and
Vitorino, 2017; Hortaçsu, Madanizadeh and Puller, 2017; Abaluck and Adams, 2018; Agarwal
et al., 2020), and Bayesian learning (Erdem and Keane, 1996; Ackerberg, 2003; Crawford and
Shum, 2005; Ching, 2010; Dickstein, 2018; Currie and MacLeod, 2020). Although it has been
anecdotally known or argued that economic agents make choices considering the trade-off be-
tween benefits and costs of acquiring information, it is very rare for an information acquisition
behavior to be directly and cleanly observed in observational data. The context, setup, and
data I use in this paper overcome such limitations, allowing me to estimate a dynamic choice
model of costly information acquisition using novel data on information acquisition behavior,
subsequent choices, and a state variable that can be observed through the information-acquiring
decisions. Combined with testing decisions which are clearly the action of information acquisi-
tion, as well as fasting blood sugar levels which serve as both a diabetic patient’s health status
and information acquired through a blood test, I empirically examine the role of information
and its acquisition.

Second, this study contributes to extant literature on variations and efficiency of healthcare,
including geographic variation (Zhang, Baicker and Newhouse, 2010a,b; Finkelstein, Gentzkow
and Williams, 2016, 2018), provider practice style (Chandra and Staiger, 2007; Currie, MacLeod
and Van Parys, 2016; Molitor, 2018; Cutler et al., 2019), and productivity (Baicker and Chan-
dra, 2004; Chandra et al., 2016). I contribute to this strand of literature by proposing a unifying
framework of testing, treatment, and clinical outcomes, and using an objective health measure
to study the variations and their implications. Despite the importance of medical testing in not
only accounting for healthcare utilization but affecting health outcomes, how medical providers
decide to test has received little attention. Recent papers on over- and under-testing (Abaluck
et al., 2016; Mullainathan and Obermeyer, 2020) abstract from corresponding treatment de-
cisions by studying specific situations, where subsequent choices are completely determined
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by test results.1 In a more general setting, however, a medical provider is free to make any
treatment decisions with or without raw test results. I explicitly disentangle testing and treat-
ment decisions, by modeling a provider’s belief on a patient’s health status, which can be
updated through medical testing. In addition, a fasting blood sugar level is an ideal health-
care performance measure. Because it is independently observed by universal health screening
and its measurement does not reflect provider-specific measurement errors (Song et al., 2010),
heterogeneity in blood sugar levels must reflect differential healthcare performance.

The remainder of the paper is organized as follows. In section 2, I describe institutional
details and data. In section 3, I provide reduced-form evidence for the role of medical testing
in healthcare performance. In section 4, I develop a dynamic model with observation and
adjustment costs, and in Section 5, I provide structural estimation results. In section 6, I
conduct counterfactual experiments. Section 7 concludes.

2 Background and Data

2.1 Diabetes

Diabetes is a chronic disease in which a patient experiences high blood sugar levels over a long
period. It occurs either when the pancreas cannot produce insulin (Type 1 diabetes), or when
the insulin does not lower the blood sugar level properly (Type 2 diabetes).2 Increased blood
sugar levels have cumulative health effects on the human body and lead to many complications,
such as heart attacks, strokes, kidney failure, and blindness.3 Four hundred twenty-two million
adults worldwide were estimated to have diabetes in 2014.

It is important to keep glucose levels under control to reduce the health risks. A patient is di-
agnosed with diabetes when the fasting blood sugar level is greater than or equal to 126mg/dL.
To eliminate direct symptoms and reduce long-term complications, a provider is recommended
to set a target blood sugar level for a patient. The American Diabetes Association recommends
80-130mg/dL as the target preprandial glucose level.4 There are a variety of anti-diabetic medi-
cations lowering blood glucose levels.5 Multiple medications might be prescribed if monotherapy

1Oster, Shoulson and Dorsey (2013) provide a theoretical model of an individual who chooses to learn his
true state through testing, although there is no subsequent treatment decision.

2I focus on patients with Type 2 diabetes, who are managed most commonly with oral medications.
3An individual diagnosed with diabetes at age 40 is estimated to lose 11.6 life-years for men and 14.3 for

women (Narayan et al., 2003).
4This might be tightened or relaxed depending on a patient’s condition. Treatment guidelines of the Korean

Diabetes Association suggest the same criteria and target levels (Korean Diabetes Association, 2015).
5The Health Insurance Review and Assessment Service (HIRA) of Korea categorizes the medications into

the following nine classes: Biguanides, Sulfonylureas, DPP-4 inhibitors, Insulin, Alpha-Glucosidase Inhibitors,
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is insufficient to control blood glucose levels (Powers, 2015; World Health Organization, 2016;
American Diabetes Association, 2019; Korean Diabetes Association, 2019).

The medical community advises a provider to perform regular blood tests to monitor a
patient’s blood glucose level. A variety of blood tests measure blood sugar levels with different
levels of accuracy and convenience. To measure a fasting blood sugar level, the patient is
required to fast at least eight hours before blood is drawn. The random test is done at any
time of the day and its result can fluctuate due to food and physical activity. The A1C test,
which measures the percentage of glucose attached to hemoglobin, represents an average blood
sugar level over the past two to three months. Its reliability and convenience of not requiring
fasting have made the medical community recommend the A1C test for diagnosis from 2009
(International Expert Committee, 2009). Current clinical guidelines advise a medical provider
to “perform the A1C test at least two times a year” in usual diabetic patients and “quarterly in
patients whose therapy has changed or who are not meeting glycemic goals.” In 2019, the A1C
test became the primary technique to assess diabetes management. It can be measured through
either laboratory tests or point-of-care (POC) meters. Latter semi-quantitative methods tend
to be less accurate (American Diabetes Association, 2019).67

2.2 Healthcare System in South Korea8

South Korea has a single-payer healthcare system. The National Health Insurance Act requires
all Korean citizens to be covered by either National Health Insurance (NHI) or Medical Aid
Program.9 The National Health Insurance Service (NHIS) provides health insurance coverage
to all NHI beneficiaries as a single health insurance agency. All NHI beneficiaries receive the
same coverage, regardless of their enrollment status.10

Healthcare provision is heavily regulated in South Korea. Providers are paid based on a
fee-for-service system; each service provided is paid for separately.11 Fees and coinsurance vary
only based on provider categories—clinics, hospitals, general hospitals, and tertiary hospitals.

Thiazolidinediones, Nonsulfonylurea secretagogues, GLP-1 agonists, and SGLT-2 inhibitors.
6Food and Drug Administration (2016) requires 95% and 99% of glucose readings from self-monitoring blood

glucose test systems to be within 15% and 20% of the true value, respectively.
7Theranos, which falsely claimed to have developed finger-stick testing to detect health problems, is currently

under regulatory and criminal review New York Times (2016).
8See Kwon, Lee and Kim (2015) for further details.
92.9% of the population were Medical Aid beneficiaries in 2017.

10Insurance premiums are based on income and wealth, proportional to wage income for employees. For
self-employed people, both income and property values, such as houses and vehicles, are counted. Non-working
dependents are also covered without additional premiums in either case.

11The bundled payment system, also referred to as the Diagnosis Related Group (DRG)-based prospective
payment system, was introduced in 2013 to seven disease categories that require surgical treatment, such as
cataract procedures and cesarean sections.
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Fees are negotiated between the government and provider associations annually. Providers
have little financial incentive regarding prescribing behavior. The 2000 amendment to the
Pharmaceutical Affairs Act enforces mandatory separation of prescribing and dispensing.

As universal health screening to NHI beneficiaries, the National Health Screening Program
(NHSP) was introduced in 1995.12 The NHSP offers biennial health screening to all NHI
beneficiaries who pay the insurance premium, including their dependents aged 40 and older.
Non-white-collar workers are offered health screenings each year, consisting of standardized
tests and body measurements, such as blood and urine tests, blood pressure, eye and radiology
examinations, height, and weight. It also includes a survey on family health history, exercise,
cigarette smoking, and alcohol consumption. Participation was 78.5% as of 2017.

2.3 Data

I use population-level Korean National Health Insurance and Medical Aid beneficiaries’ data
from 2002-2017 and 2006-2017, respectively. For each beneficiary, I observe demographics,
including sex, year of birth, enrollment and disability status, and insurance premiums, which
proxy income. The county of residence is observed each month.13 For each medical provider,
I observe the county in which it is located, the category of the provider, its specialty, and
the number of physicians.14 These are linked with National Health Screening data and medical
claims data. The National Health Screening dataset includes a fasting blood sugar level, a main
outcome variable of the paper, in addition to the date the health screening was conducted. For
each patient visit, the medical claims dataset provides both patient and provider identifiers,
the date of visit, and a list of diagnosis codes. I observe all treatment codes, such as medical
tests and prescriptions provided to the patient.

From population-level data, I draw 3 million diabetic patients, 5.8% of the population. For
a complete treatment history of patients with Type 2 diabetes, I drop all patients treated as a
diabetic in the first year in the data, because they may have been diagnosed and treated before
they appeared in the data. I exclude all beneficiaries who did not have medical claims with
the diagnosis code for diabetes for two consecutive years after first diagnosed and treated. I
also drop patients with the diagnosis code for Type 1 diabetes over more than two-thirds of
their treatment history. Among patients who had been prescribed anti-diabetic medications for
more than a year, I retain patient-quarters whose medical or prescription records are observed
each quarter.15

12It was expanded to Medical Aid beneficiaries in 2012.
13In this paper, the county stands for si-gun-gu-level.
14A physician identifier is not observed in data.
15To identify patients with diabetes from claims data and to avoid a situation in which a non-diabetic
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A quarterly dataset is constructed for reliable treatment intervals. 97.73% of patient-
quarters had at least one provider visit throughout the quarter.16 A medical test is considered
to have been conducted in the quarter if its record exists during the period. For prescription
adjustment, I choose a prescription record with the longest prescription period of the quarter.
After constructing nine indicators of anti-diabetic medications,17 an indicator of prescription
adjustment is defined as whether at least one of the nine indicatior variables changes in compar-
ison to those of the last quarter.18 Quarterly claims data are linked with a fasting blood sugar
level measured through National Health Screening. Instead of actual testing results performed
by a provider during a patient visit, the health screening dataset provides the health measure
that would have been observed if a patient had been tested, regardless of whether s/he was
tested.1920 Table 1 provides an overview of the datasets.

[Table 1 about here.]

3 Heterogeneity in Medical Testing

3.1 Heterogeneity in Healthcare Performance

[Figure 1 about here.]

The American Diabetic Association recommends 80-130mg/dL as the general preprandial
glycemic target (American Diabetes Association, 2019). Figure 1 shows, however, a substantial
portion of patients whose fasting blood sugar levels did not fall into the target level. Patient-
level median glucose levels also show striking dispersion. 50.11% and 49.80% of patient-years
and patients’ glucose levels are not in the target range, respectively.

To investigate the source of the dispersion, I estimate regression model:

beneficiary was misclassified as diabetic, a patient with diabetes in claims data is commonly defined as those
who are diagnosed during at least one inpatient stay or at least two outpatient visits in one year (Hux et al.,
2002; Miller, Safford and Pogach, 2004; Rector et al., 2004; Asghari et al., 2009). The criterion imposed in the
paper satisfies the common operational definition.

16Frequent provider visits in Korea are often at the expense of short consultation time, a so-called “three-
minute consultation.” See OECD (2010); Moon (2012).

17Following the Health Insurance Review and Assessment Service (HIRA)’s criteria, I consider nine classes of
medications: Biguanides, Sulfonylureas, DPP-4 inhibitors, Insulin, Alpha-Glucosidase Inhibitors, Thiazolidine-
diones, Nonsulfonylurea secretagogues, GLP-1 agonists, and SGLT-2 inhibitors.

18It effectively rules out brand or dosage changes, as long as the classes of medications remain constant.
During the first period, it is equal to 1 whenever a patient received at least one class of anti-diabetic drug.

19A patient must inform a provider directly about a health screening result if s/he wishes, because the result
is not automatically passed to the provider.

20Panel A of Table A.1 shows that variables constructed from the claim data explain little about participation
in health screenings, mitigating concern on potential sample selection due to its compliance.
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yit = αi + ψjit + xitβ + εit, (1)

where yit is an outcome variable of interest for patient i at t. αi and ψj represent additive effects
for patient i and provider j, respectively. xit indicates time-varying patient characteristics. jit
and pit are indicators of the provider treating i at t and the place where i lives at t, respec-
tively. εit is an unobserved time-varying error term. To measure health performance, I use
the logarithm of blood sugar level as the outcome variable. The clinical outcome is measured
from laboratory testing, which is unlikely affected by a diverse provider practice style. Health
measures constructed from claim data are known to suffer from provider-specific measurement
errors (Song et al., 2010). A patient’s age and its square are included as controls.

The identifying variation of patient and provider heterogeneity, αi and ψj, comes from
patient moves between providers. Since Abowd, Kramarz and Margolis (1999)’s findings on de-
composing worker and firm contributions to a wage distribution, it has been applied to a variety
of settings, including health economics, industrial organization, and marketing (Bronnenberg,
Dubé and Gentzkow, 2012; Skipper and Vejlin, 2015; Finkelstein, Gentzkow and Williams, 2016,
2018; Allcott et al., 2019). Identification relies on network exogeneity. Let Dijt be an indicator
of patient-provider network and Dijt = 1 if and only if patient i is treated by j at t: jit = j.
Identification requires E[εit|D, x, α, ψ] = 0.21 The model allows patient-provider network D to
correlate with patient and provider heterogeneity, α and ψ. It would be violated, however, if
time-varying shocks affected by whom patients choose to be treated. For example, it permits
the case in which an inherently sick patient (too low or high αi) is treated by a certain provider,
characterized by ψj. It does not allow for the situation in which a bad εijt shock makes him/her
switch providers.

The two samples (i.e., full and migrants) have their own advantages. The number of movers
in the full sample is large, and as described below, it is less likely to suffer from limited mobility
bias. In the migrants subsample, patient moves in the subsample are less likely attributable to
the time-varying shock, εijt, and moves are more likely exogenous. Survey data from the Korea
Labor & Income Panel Study suggest that only 4.6% of households moved to current locations
due to environmental or health issues.22 It follows that the portion of household members
who switched providers due to health concerns, not environmental issues, is even lower. Some
household members might have moved to current locations due to a family member’s health
concerns, not their own. In both datasets, singleton observations are dropped for reliable
estimations (Correia, 2015, 2016).

21Identification of Equation (1) requires no autocorrelation upon movers.
22Finkelstein, Gentzkow and Williams (2016, 2018) also use patient migration for causal interpretations.
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When estimating the regression model (1) (AKM, hereafter), limited mobility bias arises
if a network is not well-connected and the number of movers is small (Andrews et al., 2008,
2012; Bonhomme, 2020; Lamadon, Mogstad and Setzler, 2019). Table 1 shows that the average
number of movers in the full sample and migrants subsample are 23.6503 and 2.2240, respec-
tively. I consider Bonhomme, Lamadon and Manresa (2019a)’s classification method (BLM,
hereafter) to address the concern. In the first step, I classify providers into K groups based on
the empirical distribution of yit, using the k-means clustering algorithm. In the second step,
I estimate αi and ψk(j), where k(j) is a clustering indicator. I consider K = 10 clusters for
estimation.23 I view discretized provider heterogeneity as an approximation of true provider
heterogeneity Bonhomme, Lamadon and Manresa (2019b).

Equation (1) rationalizes the dispersion by allowing the conditional mean function to differ
by patient and provider identifiers:

E[yit|D, x, α, ψ] = αi + xitβ + ψj.

The source of variation can be examined using the standard variance decomposition formula:

V ar(yit) = V ar(αi + xitβ) + V ar(ψjit) + 2Cov(αi + xitβ, ψjit) + V ar(εit). (2)

In addition to patient and provider heterogeneity contributing to the mean level of the
outcome variable, I also consider potential heteroskedasticity in the error term by allowing its
variance to differ by provider:24

V ar(εit|jit = j) = σ2
j .

To identify providers’ contribution to the dispersion of blood sugar levels from Equation (1), I
adjust the variance of the error term so that each ε̃it satisfies the following equality:

ˆV ar(ε̃it|jit = j) = min
j′

ˆV ar(εit|j′), (3)

for each j. This removes provider-level heteroskedasticity from contributing to the disper-
sion, V ar(εit|jit = j), by adjusting the variance of the error term so it is not larger than
minj′ V ar(εit|j′). Unlike the standard variance decomposition, it informs to what extent het-

23See Table A.2 and Table A.3 for robustness checks.
24Estimates of the variance of the error term, σ̂2

j , would be biased if patients and providers are sorted
differentially. Table 2 shows, however, no evidence of provider-patient sorting, as provider and patient effects
are uncorrelated. Figure A.1 provides an additional evidence of the no sorting. Except one provider class
accounting for less than 1% of observations, there are no substantial differences of distributions of patients’
blood sugar levels across provider classes. Richer specification of the variance allowing for potential sorting
would be achieved by allowing it to differ by not only provider, but patient identity.
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eroskedasticity explains overall dispersion. The minimum value of ˆV ar(εit|k′) is chosen for the
BLM estimates. For AKM estimates, I choose the 25th percentile of ˆV ar(εit|j′) to account for
potential sampling variability.25

[Table 2 about here.]

Table 2 shows that although provider heterogeneity is not particularly suited to explaining
mean blood sugar levels, it contributes to the dispersion of a patient’s blood sugar level over
time. Panel A of Table 2, for the full sample, shows that patient fixed effects, αi, explain
substantial variation. Using the variance decomposition formula in Equation (2), 49.81% and
2.58% of patient and provider fixed effects explain the variance, respectively. Panel B of Table
2 shows estimates from the migrants subsample. Similar to Panel A of 2, 50.73% and 0.74% of
the variance is explained by patient and provider fixed effects, respectively. When accounting
for heteroskedasticity, however, provider heterogeneity explains larger portions of the variance.
Table 2 shows that the variance decreases by 9.06% (Panel A) and 8.56% (Panel B), respec-
tively, when I adjust heteroskedastic errors using Equation (3). Overall, provider heterogeneity
explains 10.69% (Panel A) and 10.88% (Panel B) of the total variance, respectively.26

3.2 Testing and Prescription Adjustments

[Table 3 about here.]

I now document heterogeneity in testing and prescription adjustments, and their relationship
with provider heterogeneity identified in Section 3.1. Table 3 documents heterogeneous and
sub-optimal testing behavior. Panel A of Table 3 shows testing frequencies averaged by patient-
year. Unlike the medical community’s advice to perform an A1C test at least twice a year, A1C
monitoring is conducted far below the guideline. 27.71% of patient-years did not get the test at
all, and 27.08% received it once a year. Quantitative laboratory testing, which can usually be
conducted to measure a patient’s fasting blood sugar level, was performed much less. 48.86%
did not take quantitative testing. Semi-quantitative tests, such as point-of-care meters, were
more likely to be carried out. Panel B of Table 3 shows that the sub-optimal testing frequency
is attributable to providers. Averaging them by provider-quarter, 21.87% performed the A1C
test to 20% or less of their patients each quarter. They can thus be considered not to be treating
their patients based on the guideline, since those who conducted the A1C test on each patient

25Since small estimated variance might reflect sample variability, I do not adjust it if it is smaller than
the threshold value, ˆV ar(εit|j′), to avoid artificially amplifying its dispersion. Table A.2 indicates that BLM
estimates with the full sample show similar results.

26This is robust to alternative specifications. See Table A.2.
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once a year were expected to conduct it to approximately 25% of their patients each quarter.
This is consistent with medical literature on variations of testing frequencies (Yoo et al., 2017).

[Figure 2 about here.]

Other notable features are infrequent prescription adjustments. Often referred to as clin-
ical inertia in medical literature (Phillips et al., 2001), providers are not willing to adjust
prescriptions over time. Figure 2 shows survival analysis results for prescription adjustments.
The median time of prescription adjustment is 5 quarters, suggesting that providers’ reluc-
tance to consider prescription adjustments when needed might cause suboptimal healthcare
performance.

[Table 4 about here.]

Table 4 shows that low-performing providers, which set higher target levels and let patients’
blood sugar levels fluctuate over time, tended to under-test. To investigate relationships be-
tween provider practice patterns and provider performance, I consider provider fixed effects,
ψ̂j, and heteroskedastic standard deviation of the error term, σ̂j, as dependent variables. For
regressors, I use the number of medical testing and prescription adjustments throughout a year,
with a maximum of four. For testing, I consider the number of quarters the A1C test was per-
formed. Panel A of Table 4 shows that providers who conducted an A1C test less frequently
tended to set higher target levels (high ψ̂j). Panel B shows that they were also more like to let
patients’ blood sugar levels fluctuate over time, characterized by the large standard error of the
error term (σ̂j). These results are robust to the addition of another regressor. Although poor
diabetic management appears to associate with infrequent testing, its interpretation requires
caution. Testing and prescription adjustments might reflect not only provider preference, but
patient characteristics.

[Table 5 about here.]

Table 5 shows which clinics tended to under-test. I examine characteristics of testing clinics,
since provider-level characteristics are more informative in clinics that consist of a small number
of physicians. As clinic-level characteristics, I consider three types of regressors—year of entry,
whether it specializes in internal medicine, and whether it has an A1C testing device. In South
Korea, the qualification test for medical specialists is regulated by the government (Kwon,
Lee and Kim, 2015). To measure the year of entry, I construct two variables—an indicator of
whether it existed as of 2002, and if not, from which month it appears in data. These are proxies
for when a physician was trained. The indicator of having the testing device is zero either if
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50% or more A1C tests were outsourced or if it did not conduct the test throughout a year.
Table 5 shows that those specializing in internal medicine tended to offer more frequent A1C
tests, and those who entered recently were more likely to perform the test. These imply that
being knowledgeable on diabetes care and its current trends is a predictor of testing providers.
Those who can perform the A1C test without outsourcing is also a predictor of providers who
test more frequently. The fact that it is equipped with the testing device, however, might reflect
a clinic’s preference for the A1C test.

3.3 Discussion

I document heterogeneity in healthcare performance and its potential mechanisms using a stan-
dardized health measure linked with matched provider-patient health data. Regression analysis
suggests that dispersion of mean blood sugar levels is largely attributable to patient heterogene-
ity. There is, however, substantial provider heterogeneity when explaining dispersion in blood
sugar levels over time. Dispersion is particularly large in those who performed medical tests
infrequently, evidencing that providers’ less-than-optimal testing behavior made the clinical
outcome poorly controlled over time, leading to low healthcare performance.

Although regression results describe the mechanism of heterogeneous healthcare perfor-
mance, the research questions of this paper have not yet been addressed. First, heterogeneity
identified from Equation (1) themselves reveal nothing regarding economic mechanisms that
drive dispersion of the clinical outcome. Examining predictors of heterogeneity provides only
partial answers, since medical testing is an endogenous decision of a provider concerning patient
health. Second and relatedly, they do not allow me to answer how an alternative allocation or
policy affects healthcare performance. During counterfactual exercises, it is necessary to be ex-
plicit about an economic mechanism regarding how medical testing makes providers make more
informed treatment choices. Third, they do not explain the distributional and dynamic features
of data. The standard variance decomposition formula (2) does not include the heteroskedas-
tic nature of healthcare performance. Equation (1) does not inherently permit potential state
dependence of the outcome variable over time. To create an empirical framework that not
only explains distributional and dynamic features but clarifies how economic mechanisms af-
fect healthcare performance, I develop and estimate a dynamic choice model with observation
and adjustment costs in the following sections.
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4 A Dynamic Model with Observation and Adjustment

Costs

I present a model that rationalizes a medical provider’s testing and prescription adjustment
behavior presented in the last section, serving three purposes. First, it proposes a unifying
framework that relates medical testing, treatment decisions, and a clinical outcome. It explic-
itly models a provider’s endogenous information acquisition, which affects consequent treatment
choices and outcomes, thereby providing an empirical model regarding why testing behavior
affects healthcare performance. Second, its structural estimates permit welfare calculations and
policy-relevant counterfactual analysis in Section 6. Third, I combine the model with novel data
on observations, adjustments, and states to estimate a dynamic model with observation and
adjustment costs, which has drawn economists’ attention to rationalizing information frictions.
The model presented below is an extension of Alvarez, Lippi and Paciello (2011) and Alvarez,
Guiso and Lippi (2012)’s model with observation and adjustment costs. In their model, an
agent optimally chooses to observe the state by incurring a fixed observation cost, and adjusts
a choice variable to minimize expected discounted losses. I apply this model by interpreting a
provider’s medical testing and prescription adjustments as observation and adjustment behav-
iors, respectively, where the provider’s objective is to maintain the state, a blood sugar level,
around the target level.

4.1 Setting

Let yt be the true state, the logarithm of the patient’s blood sugar level at the beginning of
the period t. yt + at is the true state at the end of the period t, after prescription adjustment
at is made. A medical provider’s objective is to maximize a patient’s expected discounted
utility. Her per-period utility, u(yt + at; θ), is a symmetric and concave function whose unique
maximum is yt + at = y∗, the target level. Described in Section 2.1, this represents her long-
term goal because keeping a patient’s blood sugar level close to the target is important to
prevent complications from non-normal blood glucose levels. I assume that the utility function
is quadratic:

u(yt + at; θ) = −γ(yt + at − y∗)2, (4)

where γ is a scaling factor. It can be understood as a quadratic approximation to more general
functional form of the per-period utility. She would optimally set yt + at = y∗, or equivalently,
at = y∗− yt each period by prescribing medication if she did not face any information frictions,
discussed below.
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Choice variable at denotes a prescription adjustment relative to the last period. If at is
positive, yt+1 is expected to increase because treatment becomes less aggressive than that
of the last one. This can be accomplished by adding or removing molecules from the last
prescription.27The (log of the) blood sugar level follows a random walk:

yt+1 = yt + at + wt, (5)

where wt ∼ N(0, σ2
w) denotes the i.i.d. error term. y1 is also normally distributed with

y1 ∼ N(E[y1], σ
2
y1). (6)

Each period, a provider faces two decision problems: medical testing and adjustment choices
during the first and second stages, respectively.Figure 3 describes a decision tree. Her value
function is:

V (zt−1, at−1) = max{−FO + E[U(yt, z
t−1, at−1)|zt−1, at−1]︸ ︷︷ ︸

observe yt

, E[U(z0t, z
t−1, at−1)|zt−1, at−1]︸ ︷︷ ︸

do not observeyt

},

where

U(zt, z
t−1, at−1) = max{max

at
{−FA − γE

[
(yt + at − y∗)2|zt, at, at−1

]
+ βV (zt, at, a

t−1)}︸ ︷︷ ︸
adjust at

,

−γE
[
(yt + 0− y∗)2|zt, 0, at−1

]
+ βV (zt, 0, at−1)︸ ︷︷ ︸

do not adjust at

},

denotes the utility she faces during the second stage, and V (zt, at, a
t−1) ≡ V (zt, at), FO and

FA stand for fixed costs of observation and adjustment, respectively, and zt denotes a signal
about the true state yt. The value function depends on all past signals zt = (z1, ..., zt) and
prescription adjustments at = (a1, ..., at).28

During the first stage, she decides which signal zt ∈ {yt, z0t}to observe; she chooses whether
to perform a medical test to observe exact yt and incurs fixed cost of observation FO. Without
the test, she observes a noisy signal potentially based on communication with the patient or
simple finger-prick testing:

z0t = yt + v0t, (7)
27An advantage of using the log-transformed value of the blood sugar level is that it rationalizes progression

of diabetes. Without any prescription adjustment, the mean of the raw blood sugar levels increase over time
due to its log-normality: E[exp(yt)] = E[exp

(
y1 +

∑t−1
s=1 ws

)
] = exp

(
E[y1] + 0.5

(
σ2
y1 + (t− 1)σ2

w

))
.

28In problems of imperfect state information, they are state variables from the agent’s viewpoint (Bertsekas,
2017).
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where v0t ∼ N(0, σ2
v0) is the i.i.d. noise term. After the observation decision is made, she forms

beliefs on the current blood sugar level, yt|zt = (z1, ..., zt) for subsequent treatment decision.
Each zs is either ys or z0s, depending on her testing choices at s. The belief at t = 1 coincides
with Equation (6).

After she chooses to receive zt ∈ {yt, z0t} and forms beliefs, she decides whether to adjust
existing prescriptions during the second stage. She chooses a prescription adjustment at. Due
to symmetry and concavity of the per-period utility, the optimal adjustment is a∗t = y∗ −
E[yt|zt, at−1]. She incurs fixed adjustment cost FA if she makes an adjustment.29 Her decision
rule of the adjustment is to change the prescription if the utility of adjustment is greater than
that of no adjustment:

−FA − γE
[
(yt + a∗t − y∗)2|zt, a∗t , at−1

]
+ βV (zt, a∗t , a

t−1)︸ ︷︷ ︸
adjust at

> −γE
[
(yt + 0− y∗)2|zt, 0, at−1

]
+ βV (zt, 0, at−1)︸ ︷︷ ︸

do not adjust at

,

and

−FA + βV (zt, a∗t , a
t−1)︸ ︷︷ ︸

adjust at

> −γE
[
(yt − y∗)2|zt, at−1

]
+ βV (zt, 0, at−1)︸ ︷︷ ︸

do not adjust at

.

During the first stage, uncertain about the true state and its noisy signal she could receive,
(yt, z0t), she performs a medical test if its expected utility is higher:

−FO + E[U(yt, z
t−1, at−1)|zt−1, at−1]︸ ︷︷ ︸

observe yt

> E[U(z0t, z
t−1, at−1)|zt−1, at−1]︸ ︷︷ ︸

do not observe yt

.

4.1.1 Kalman filtering

Normality of y1, wt, and v0t, together with the quadratic utility specification, make the problem
more tractable. In addition to the fact that both yt|(zt, at−1) and yt+1|(zt, at) are normal distri-
butions, we have the recursive formula of the Kalman filter estimates and variances (Bertsekas,
2017):

ŷt|t ≡ E[yt|zt, at−1] =
σ̂−2
t|t−1

σ̂−2
t|t−1

+σ−2
v
ŷt|t−1 +

σ−2
v

σ̂−2
t|t−1

+σ−2
v
zt

σ̂2
t|t ≡ V ar(yt|zt, at−1) = 1

σ̂−2
t|t−1

+σ−2
v

ŷt+1|t ≡ E[yt+1|zt, at] = ŷt|t + at

σ̂2
t+1|t ≡ V ar(yt+1|zt, at) = σ̂2

t|t + σ2
w,

(8)

29It rationalizes infrequent adjustment decisions, described in Section 3.2.

16



where σv = 0 if zt = yt and σv = σv0 if zt = z0t. We also have a variance-bias decomposition of
the expected values of the utility function:

E[ u(yt + at; θ)︸ ︷︷ ︸
=−γ(yt+at−y∗)2

|zt, at] = −γσ̂2
t|t − γ(ŷt|t + at − y∗)2,

where the first and second terms, −γσ̂2
t|t and −γ(ŷt|t+at−y∗)2, are equal to 0 whenever observed

and adjusted, respectively.
Several comments on these specifications are warranted. First, the updated formula for

ŷt|t is equal to the weighted average of the Kalman filter estimate of yt at the end of the last
period, ŷt|t−1, and a signal received in the current period, zt. This places more weight on
the signal whenever its variance is smaller, and especially ŷt|t = yt and σ̂2

t|t = 0 if zt = yt

because it is the exact information without noise. Second, due to normality of beliefs on
yt, which is its best prediction, (ŷt|t−1, σ̂

2
t|t−1) contains all information for the best prediction

of yt at the end of period t − 1. An immediate result is that the value function reduces
to V (zt−1, at−1) = V (ŷt|t−1, σ̂

2
t|t−1). Third, the variance-bias decomposition result shows that

each testing and adjustment decision corresponds to whether to remove variance σ̂2
t|t or bias

(ŷt|t + at − y∗)2 terms of the expected utility function, at the expense of fixed observation and
adjustment costs FO and FA, respectively. σ̂2

t+1|t = σ2
w if observed and ŷt+1|t = y∗if adjusted.

Combining these results, the agent solves a Bellman equation:

V (ŷt|t−1, σ̂t|t−1) = max{E[−FO + U(yt, ŷt|t−1, σ̂t|t−1)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸
observe

, E[U(z0t, ŷt|t−1, σ̂t|t−1)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸
do not observe

}

= max{E[max{−FO − FA + βV (y∗, σ2
w)︸ ︷︷ ︸

observe and adjust

,

−FO − γ(yt − y∗)2 + βV (yt, σ
2
w)︸ ︷︷ ︸

observe but do not adjust

}|ŷt|t−1, σ̂t|t−1],

E[max{−FA − γσ̂2
t|t + βV (y∗, σ̂2

t|t + σ2
w)︸ ︷︷ ︸

do not observe but adjust

,

−γσ̂2
t|t − γ(ŷt|t − y∗)2 + βV (ŷt|t, σ̂

2
t|t + σ2

w)︸ ︷︷ ︸
neither observe nor adjust

}|ŷt|t−1, σ̂t|t−1]}

where ŷt|t and σ̂2
t|t are obtained from (8) and U(·, ·, ·) is appropriately defined. Figure 3 depicts

this two-stage decision problem.

[Figure 3 about here.]
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4.2 Discussion

I discuss several implications of the model with observation and adjustment costs.

Comparison with Extant Literature. My model synthesizes two variants—adjustment
cost models and models of information acquisition. Typical models with adjustment costs are
a variant of an (s, S) inventory problem (Stokey, Lucas and Prescott, 1989; Stokey, 2008; Bert-
sekas, 2017). Endogenous information acquisition models include rational inattention models
(Sims, 2003; Alvarez, Lippi and Paciello, 2011; Alvarez, Guiso and Lippi, 2012; Matějka and
McKay, 2015; Steiner, Stewart and Matějka, 2017), search and consideration set models (Hor-
taçsu and Syverson, 2004; Hong and Shum, 2006; De los Santos, Hortaçsu and Wildenbeest,
2012; Honka, 2014; Honka, Hortaçsu and Vitorino, 2017; Hortaçsu, Madanizadeh and Puller,
2017; Abaluck and Adams, 2018; Agarwal et al., 2020), and Bayesian learning (Erdem and
Keane, 1996; Ackerberg, 2003; Crawford and Shum, 2005; Ching, 2010; Dickstein, 2018; Currie
and MacLeod, 2020). My two-stage model of optimal information acquisition shares a similar-
ity with rational inattention models; an endogenous decision of information acquisition during
the first stage affects beliefs for a standard choice problem during the second. However, unlike
models of inattention, which rely on a specific parameterization of information costs, such as
Shannon entropy, the cost of information is characterized by a fixed cost of observation. My
parameterization of the costs of information and adjustment are closest to those of Alvarez,
Lippi and Paciello (2011); Alvarez, Guiso and Lippi (2012)’s continuous time models with ob-
servation and adjustment costs, where an adjustment cannot be made unless the true state is
observed. In addition to the two-stage nature of my discrete-time model, I also permit a free
and noisy signal to identify inaccuracy of usual checkups over medical testing.30

Additional Dispersion from Information Frictions. Once the true state, a patient’s blood
glucose level, is observed through medical testing, a provider makes a perfect adjustment, in
that the state at the end of period t is exactly equal to her target level: ŷt+1|t = yt + at = y∗.
The adjustment is thus always dispersion-reducing. If the test is not accompanied, however,
the adjustment is made in that her belief on the true state at the end of the period equals the
target level, ŷt+1|t = ŷt|t+at = y∗, and the true state after adjustment, yt+at, is not necessarily
equal to the target. If yt > y∗ > ŷt|t, she erroneously believes the patient needs less aggressive
treatment at > 0 when his/her glucose level should be lowered. This gives rise to an additional
dispersion of a patient’s blood sugar level over time, identified in Section 3.1.

30Alvarez, Lippi and Paciello (2011) propose a continuous-time model with free signals in their appendix and
provide analytical solutions for certain extreme cases.
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In addition to the fixed costs that describe her tendency to observe and adjust, to what
extent an adjustment without testing results in an extra dispersion is governed by two struc-
tural parameters—the standard deviation of a noisy signal, σv0, and the error term of the law
of the motion, σw. Equation (8) shows that the accuracy of the belief when the adjustment is
made, σ̂2

t|t, depends on them. The larger σv0 is, the less informative the noisy signal is about
the current glucose level. If σw is large, past signals become less informative when predicting
the blood sugar level during the current period. In Section 5.3, I use structural estimates to
show the extent the previous information becomes uninformative over time.

State- and Time-dependent Decision Rules. The model incorporates two important
margins of medical testing and prescription adjustments called state- and time-dependent deci-
sion rules (Alvarez, Lippi and Passadore, 2017). Equation (8) shows that ŷt|t and ŷt+1|t depend
on the state through zs = ys + vs. A decision rule based on them is state-dependent in that
sense. However, under the normality assumption σ̂2

t|t and σ̂2
t+1|t depend only on the agent’s past

choices and are unaffected by the true state. A cutoff decision rule solely based on them is,
therefore, to wait until it reaches the cutoff level. As the variances grow deterministically until
observed, the agent would perform it for every predetermined time interval.

[Figure 4 about here.]

The state vector of the model consists of (ŷt|t−1, σ̂t|t−1), using both state- and time-dependent
decision rules. Figure 4 shows net utility of medical testing and adjustment for each (ŷt|t−1, σ̂t|t−1).
Adjustment choice is largely state-dependent and she is willing to adjust prescriptions whenever
beliefs about her patient’s blood sugar level fall outside of the inaction region. Testing choice is,
however, both state- and time-dependent. She is willing to observe by performing the test reg-
ularly (time-dependent) but at the same time, she would like to ensure her beliefs by observing
the true state through medical testing if she believes the blood sugar level is poorly controlled
(state-dependent). I provide empirical evidence on state- and time-dependent decision rules in
Section 5.4.

Rational Expectations. The model assumes that an agent has rational expectations and
recalls all signals she has ever received for the best prediction of the true state, the Kalman
filter estimate. The rational expectations assumption accords with extant literature on con-
sumer learning on medications when classes of drugs are considered (Erdem and Keane, 1996;
Crawford and Shum, 2005; Ching, 2010; Dickstein, 2018). For the perfect recall, while this
is reasonable to assume in this context since she observes a numeric value of a blood sugar
reading whenever she performs a test and she can record all test results in a medical chart,
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the normality assumption makes the prediction problem simpler. Instead of having to recall
all past signals zt and prescription adjustments at, Equation (8) shows the provider’s updating
formula of the best prediction is to compute the weighted average of the past Kalman filter
estimate and a new signal. After the observation choice, the Kalman filter estimate equals yt
with zero prediction error and past information is no longer needed.

Choice of at. I assume that a perfect adjustment can be made; control variable at can take
any real value and a blood sugar level during the next period changes exactly by that amount
(5). The assumption is imposed mostly for convenience, but it appears in several observations
of diabetes management. First, a provider can always choose more aggressive treatment by
adding more classes of anti-diabetic medications (American Diabetes Association, 2019; Ko-
rean Diabetes Association, 2019).31 Second, providers are aware of the effectiveness of their
prescriptions, considering the large number of patients each provider treats and with help from
clinical guidelines.32 Third, a provider can confirm resulting changes to a patient’s blood glu-
cose level from another blood test and modify prescriptions if they do not reach the desired
level. If dispersion of yt + at remains after the adjustment, it might bias some structural pa-
rameters, such as the standard deviation of the error term of the law of motion (σw), since
its identification argument relies on the fact that dispersion after both and adjustment reflect
variation in the error term.

Patient-Provider Relationship. A simple interpretation of the model is for a provider
to behave in a patient’s best interest and their interests align, which can be far from realistic.
My view is to interpret key parameters, including fixed costs of medical testing and adjust-
ment, as a result of provider-patient relationship and negotiation. A patient might express a
preference or physical condition during a provider visit. A provider considers the preferences
of both sides, and physical condition, when making medical decisions.

From this viewpoint, a provider might face heterogeneous fixed costs and target levels
across patients. To dissociate provider and patient contributions to structural parameters,
I simultaneously identify both provider and patient heterogeneity using matched provider-
patient data. As in Section 3, the identifying variation comes from patient moves. I revisit the
bi-clustering technique for classifying provider-patient types in Section 5.3.

31See Section 2.1.
32Table 1 shows that each provider treated 77.28 patients, on average, during the sample period 2002 to

2017. Clinical guidelines contain A1C reduction from each class of agents, ranging from A1C 0.5% to 2%
(Powers, 2015; Korean Diabetes Association, 2019). They can be translated into pre-breakfast plasma glucose
14-54mg/dL, but they should be interpreted with caution (Rohlfing et al., 2002).
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5 Estimation

5.1 Specification

The structural parameters of interest are fixed costs of observation and adjustment, FO and
FA, mean and standard deviation of y1, E[y1] and σy1, standard deviation of the error term
of the law of motion (5) and a free signal (7), σw and σv0, and the target value and a scaling
factor in the per-period utility function (4), y∗ and γ. For the first- and second-stage decision
problems, I add logit errors to rationalize idiosyncratic choices. The probabilities of observation
and adjustment are:

Pr(obst = 1|ŷt|t−1, σ̂t|t−1) =
exp(−FO+E[U(yt,ŷt|t−1,σ̂t|t−1)|ŷt|t−1,σ̂t|t−1])

exp(−FO+E[U(yt,ŷt|t−1,σ̂t|t−1)|ŷt|t−1,σ̂t|t−1])+exp(E[U(z0t,ŷt|t−1,σ̂t|t−1)|ŷt|t−1,σ̂t|t−1])

Pr(adjt = 1|ŷt|t, σ̂t|t) =
exp

(
−FA+βV (y∗,σ̂2

t|t+σ2
w)

)
exp

(
−FA+βV (y∗,σ̂2

t|t+σ2
w)

)
+exp

(
−γ(ŷt|t−y∗)2+βV (ŷt|t,σ̂

2
t|t+σ2

w)

) ,
(9)

where U(zt, ŷt|t−1, σ̂t|t−1) is now the inclusive utility after zt ∈ {yt, z0t} is observed:

U(zt, ŷt|t−1, σ̂t|t−1) = log(exp(−FA − γσ̂2
t|t + βV (y∗, σ̂2

t|t + σ2
w))

+ exp(−γσ̂2
t|t − γ(ŷt|t − y∗)2 + βV (ŷt|t, σ̂

2
t|t + σ2

w))).

An agent faces a maximization problem under uncertainty on not only {yt, z0t}, but the
logit error during the second stage.

Estimation of the model requires data on the sequence of medical testing and adjustment
indicators and the true state, (obst, adjt, yt)Tt=1, where patient i’s data are observed from 1 ≤
t ≤ T and i is omitted for notational convenience.33 True state variable (yt)

T
t=1 is observed

potentially with some missing periods. Equation (8) shows that prediction errors σ̂t|t−1 and
σ̂t|t−1 depend only on the agent’s past testing choices. Kalman filter estimates ŷt|t−1 and ŷt|t

require information on the true state and signals (ys, vs)
t
s=1, and adjustment indicators. For

zt ∈ {yt, z0t}, the free signals v0s are not observed by the econometrician and must be integrated
over. The state variable yt must also be integrated over whenever it is not observed. From an
agent’s viewpoint, zt|(ŷt|t−1, σ̂

2
t|t−1) is normally distributed with:

zt|(ŷt|t−1, σ̂t|t−1) ∼ N
(
ŷt|t−1, σ̂

2
t|t−1 − σ̂2

t|t

)
. (10)

The variance reflects a reduction in uncertainty by observing zt ∈ {yt, z0t} and the prediction
33Although I observe patient i’s medical claims record up to T in data, the agent solves an infinite horizon

problem.
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error decreasing from σ̂2
t|t−1 to σ̂2

t|t. Expectations in (9) are taken with respect to (10).
Combining (9) and the distribution of the law of motion (5), the integrated likelihood for

each patient is:

l =
´
f(y1)

d1
∏T

t=2 f(yt|yt−1 + at−1)
dt

·∏T
t=1 Pr(obst = 1|ŷt|t−1, σ̂t|t−1)Pr(adjt = 1|ŷt|t, σ̂t|t)dF (ŷt|t−1, ŷt|t, at)

T
t=1,

(11)

where a0 = 0, dt = 1 whenever yt is observed by the econometrician. The likelihood is integrated
over potentially unobserved beliefs (ŷt|t−1, ŷt|t)

T
t=1, which can be approximated by the simulated

likelihood, discussed in Section 5.3.34

The value function in the likelihood (11) solves fixed point equation:

V (ŷt|t−1, σ̂t|t−1) = log(exp(−FO + E[U(yt, ŷt|t−1, σ̂t|t−1)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸
observe

)

+ exp(E[U(z0t, ŷt|t−1, σ̂t|t−1)|ŷt|t−1, σ̂t|t−1])︸ ︷︷ ︸
do not observe

)

= log(exp(log(exp(−FO − FA + βE[V (y∗, σ2
w)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸

observe and adjust

)

+ exp(−FO − E[γ(yt − y∗)2 + βV (yt, σ
2
w)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸

observe but do not adjust

))

+ exp(log(exp(−FA − γσ̂2
t|t + βE[V (y∗, σ̂2

t|t + σ2
w)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸

do not observe but adjust

)

+ exp(−γσ̂2
t|t − E[γ(ŷt|t − y∗)2 + βV (ŷt|t, σ̂

2
t|t + σ2

w)|ŷt|t−1, σ̂t|t−1]︸ ︷︷ ︸
neither observe nor adjust

)),

(12)
where expectation is taken with respect to (10). For each set of structural parameters, it can
be computed through value function iterations.

5.2 Identification

I briefly discuss how data variation identifies structural parameters. Fixed costs are identified
from observation and adjustment frequencies, up to scale. Alvarez, Lippi and Paciello (2011)
show that FA/FO is identified from the ratio of the number of adjustments and observations,
and FA and FO are functions of the frequencies of adjustments and observations multiplied by
σ2
w. The intuition is that an agent’s observation and adjustment behaviors depend on how fast

the true state changes over time (σ2
w), and her costs from observation and adjustment decisions.

34Both ŷt|t and ŷt+1|t are observed by the econometrician when the agent chooses to observe yt (obst = 1)
and it is not missing in the data. When the agent adjusts, ŷt+1|t = y∗ is observed.
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This implies that fixed costs are identified up to scale without the state variable. γ is identified
from idiosyncrasies of observation and adjustment decisions, since it is an inverse of the scale
factor of the logit error.

Data on the true state identify other parameters. σw is identified from consecutive observa-
tions of yt and yt+1, where no adjustment is made during t. Dispersion of blood sugar level after
observation and adjustment gives additional information on σw, since blood sugar levels reach
the target from choices.35 The distribution of yti , in which both observation and adjustment
are performed during ti − 1, is centered at y∗, and therefore it identifies target level y∗. Once
y∗ and σw are identified, we can find σv0 by examining the distribution of ysi , in which the only
adjustment made was at si − 1, and the state is observed before si − 1. Its dispersion reflects
both the per-period contribution (σw) to the law of motion (5) and the agent’s best prediction
not being accurate (σv0). How much a provider is willing to adjust when yt is far from y∗ also
helps identify γ. E[y1] and σy1 are identified from the distribution of yi1.

5.3 Estimation

To estimate parameters in the model, I use the nested fixed point algorithm (NFXP) (Rust,
1987, 2000). Iskhakov et al. (2016) demonstrate that when a more efficient version of the
value function iteration algorithm is adopted, its performance is comparable to the mathe-
matical programming with equilibrium constraints (MPEC) method that Su and Judd (2012)
suggested. As Rust (2000) recommended, I combine conventional value function iterations and
Newton-Kantorovich iterations to solve the inner fixed point problem (12). I use cubic spline
interpolation for two-dimensional state variables (Adda and Cooper, 2003).36 β = 0.985 is used
for estimation.

Data. I use the quarterly-level dataset described in Section 2.3. An indicator of observa-
tion, obsit, is equal to 1 whenever patient i receives the A1C test during t. An adjustment
indicator, adjit, equals 1 if and only if the combination of anti-diabetic medication classes
changes in comparison to that of the last period. yit is the logarithm of patient i’s fasting blood
sugar level during t.

Grouped Fixed-Effects to Consider Discrete Heterogeneity. To permit heterogeneity
35We would identify σw from at were it observed from the data. In their continuous-time model without free

signal z0t, Alvarez, Le Bihan and Lippi (2016) show that σ2
w is identified from the variance of at and frequency

of prescription adjustments. Their identification argument applies to conventional models with only adjustment
costs. I use an indicator of adjustment, adjt = 1{at ̸= 0}, for estimation.

3615× 15 = 225 grid points are used.
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documented in Section 3 and to address the issue of patient-provider relationships in Section
4.2, I consider a two-step grouped fixed-effects estimator proposed by Bonhomme, Lamadon
and Manresa (2019b); Bonhomme (2020). They are fixed-effects in that they allow for arbi-
trary correlation with observables, but they are grouped fixed-effects because those in the same
group share the same fixed effect. For estimtation, in the first step, providers and patients are
simultaneously classified based on moments, and in the second, I estimate the model for each
combination of provider and patient groups, identified from the clustering algorithm in the first
step.

A bi-clustering method is used to exploit matched provider-patient data and identify provider
and patient groups, which I call types. For provider type k = 1, ..., K and patient type
l = 1, ..., L, I simultaneously find grouping indicators k̂j ∈ {1, ..., K} and l̂i ∈ {1, ..., L},
respectively, which minimize objective:

min
(h̃,{kj},{li})

∑
i,t

∥∥∥hit − h̃(kjit)− h̃(ji)
∥∥∥ , (13)

where hit denote the moments for the clustering, and ∥·∥ stands for the Euclidean norm I
consider K = L = 2 and then estimate the model for each subsample out of K × L = 4. Only
non-movers across provider types are used for structural estimation.37

[Table 6 about here.]

I use observation and adjustment frequencies as provider-patient specific moments hit. The
frequencies identify fixed costs of testing and adjustment (Section 5.2) and they are observed
each period. Table 6 shows clustering results. Those with high testing and adjustment fre-
quencies are called a high type, suggesting substantial variation of adjustment frequency across
both patient and provider types.

Simulated Likelihood. I consider up to 2T + 2 dimensional simulation draws for estima-
tion.38 For value function iterations, I use two-dimensional draws to approximate two expec-
tations (12). To approximate the integrated likelihood (11), I simulate up to T -dimensional
noisy signals, (z0t)Tt=1. Missing yt must also be simulated, since state variables depend on the
true state (8) and potentially observed yt+1 centers on yt+ at. I also use another set of up to T

37The full dataset is used for bi-clustering, but for structural estimation, I use randomly drawn subsamples
to reduce computational burden.

38N = 500 leaped Halton sequences are used to approximate the high-dimensional integral (Kocis and Whiten,
1997). My structural estimates are not sensitive to the number of simulation draws.
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dimensional draws to simulate the true state. The simulation draws are drawn from Equation
(5), assuming the model is correctly specified. The simulated likelihood for estimation is:

l(obsi, adji, yi) = 1
S

∑S
s=1 f(y1)

d1
∏T

t=2 f(yt|y
(s)
t−1 + a

(s)
t−1)

dt

·∏T
t=1 Pr(testt|ŷ

(s)
t|t−1, σ̂t|t−1)Pr(adjt|ŷ(s)t|t , σ̂t|t),

where subscript (s) denotes a simulated variable. y(s)t−1 = yt−1 if not missing.

5.4 Additional Empirical Evidence

[Table 7 about here.]

Data exhibit distributional and dynamic relationships among testing, adjustment, and the
true state. Table 7 shows that testing and adjustment choices are time- and state-dependent,
respectively, discussed in Section 4.2. Panel A of Table 7 shows that past testing choice is
a strong predictor of the current choice of testing across all bi-clustered subsamples. Due to
a potential correlation between past choice and provider and patient heterogeneity, the full
sample estimate suggests a positive association between past and current choices. Conditional
on provider and patient heterogeneity, however, past and current choices associate negatively
across all subsamples. The fact that a provider is unwilling to test for two consecutive periods
is evidence that she considers past testing choices when making a testing choice and it is
time-dependent. Panel B of Table 7 shows a U-shaped relationship between blood sugar levels
and adjustment choices. If the blood sugar level is either too high or low, a provider is more
willing to adjust, evidencing that adjustment choice is affected by the state and therefore is
state-dependent.

5.5 Estimation Results

[Table 8 about here.]

Table 8 shows estimation results. Both FO/γ and FA/γ describe fixed costs of testing and
adjustment, normalized into the logarithm of the blood sugar level. Since I use testing and
adjustment frequencies for bi-clustering, high patient and provider types correspond to low fixed
costs. Consistent with 6, the fixed costs of testing, FO/γ, has substantial heterogeneity across
both patient and provider types, demonstrating that both patients’ reluctance to receive medical
testing and providers’ preference for the relatively new A1C test contribute to differential
testing frequencies. Table 8 also shows that heterogeneity in adjustment costs, FA/γ, is mostly
attributable to patient types.
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Target levels across patient and provider types, exp(y∗), are around the upper bound of
the target range of the clinical guideline (80-130mg/dL), but they do not exhibit substantial
variation across types. This result accords with the variance decomposition in Table 2; provider
fixed effects ψj, denoting the target levels, explain little of the total variance of blood sugar
levels.

Testing technology is informative across all samples. Since σv0 represents the standard
deviation of a noisy signal, it describes the extent to which standard communication with
a patient without medical testing is less informative than the medical test. Conversely, it
characterizes the relative accuracy of testing over verbal communication, and it is significant
and positive across all samples during estimation.

[Figure 5 about here.]

Discussed in Section 4.2, σv0 and the standard deviation of the error term of the law of
motion, σw, affect the degree to which no testing is uninformative in comparison to a medical
test. I plot σ̂2

t|t over time to assess the extent medical testing is informative when predicting
future states. I assume testing is performed only at t = 10. Figure 5 uses the full sample
structural estimates to show how quickly σ̂2

t|t returns to the long-term prediction error when a

patient remains untested, which solves σ̂2
·|· =

(
σ̂−2
·|· + σ−2

v0

)−1
+ σ2

w in Equation (5). At t = 11

and 12, σ̂2
t|t is 74.17% and 94.63% of the long-term prediction error, respectively. It reaches

98.94% and 99.79% of the long-term variance at t = 13 and 14, respectively. It has large
σv0, and σw makes the previous testing result quickly uninformative over time, underscoring
the importance of regular testing. However, past signals are still informative. The long-term
prediction is 55.88% of σ̂2

v , which is the prediction error were only the current signal used. I
formally investigate these effects in a counterfactual exercise in Chapter 6.

5.5.1 Model Performance

I examine model performance by comparing observed and predicted outcomes, conditional on
observed time periods, Ti. For each simulated patient i = 1, ..., N with type l = 1, ..., L, I
assign a type-k provider using estimates of the mobility model during t = 1. At the beginning
of period t ≥ 2, the mobility decision is made using mobility model estimates during t ≥ 2. If
patient i does not switch, he/she is treated by the same provider. Ti is drawn randomly from
its empirical distribution.

[Table 9 about here.]
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Table 9 shows that both observation and adjustment frequencies match well in real and
simulated data. Conditional on patient and provider types, differences in observation and
adjustment frequencies are approximately 0.2% to 0.8% and 0.8% to 2.1%, respectively. Incor-
porating the mobility model, differences are approximately 0.5% to 2.1%.

[Figure 6 about here.]

Figure 6 shows striking fit between real and simulated fasting blood sugar levels,across
patient types.

6 Counterfactual Experiments

I quantify the effects of mandatory medical testing on blood sugar levels by considering two
counterfactuals. First, medical testing must be performed every s periods, and second, it must
be given before a prescription adjustment. This serves three purposes. First, such counterfac-
tual exercises are policy-oriented. Identifying the health effects of A1C testing informs to what
extent a policy must consider direct or indirect incentives for desired health outcomes. In the
United States, the Healthcare Effectiveness Data and Information Set (HEDIS), maintained
by the National Committee for Quality Assurance (NCQA), includes an annual A1C testing
rate as a performance measure of diabetes care across providers. HEDIS measures are used to
reward quality Medicare Advantage (MA) plans and providers.39 In South Korea, the Health
Insurance Review & Assessment Service (HIRA) uses annual testing rates for diabetes quality
assessment, and subsidizes providers that offer quality diabetes management (Kim et al., 2017).
Second, it permits assessment of the appropriateness of the current clinical guideline—perform
A1C tests twice a year and each quarter in usual patients and those whose blood sugar levels
appear to fluctuate (American Diabetes Association, 2019). Third, from a model perspective,
they isolate the effects of imperfect information on health outcomes from other influences, such
as heterogeneous target levels or adjustment costs across providers.

During the first mandatory testing counterfactual, testing is performed regardless of utility.
Starting from t = 1, when a test was conducted, it is performed for predetermined time intervals.
For example, for an exercise in which the test was given every six months, it is performed every
odd period. I conduct the second experiment by prohibiting a provider from adjusting if no
testing was performed during the first stage; once the provider decides not to test during the
first stage, she cannot adjust during the second. I compare simulated blood sugar levels with

39Source: “Federal Affairs,” NCQA, 2019, accessed at https://www.ncqa.org/public-policy/federal-work/ on
11/13/2019.
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those from simulated data in which a provider chooses the medical testing optimally. As in
Section ??, I consider N = 10000 and T = 40 for each bi-clustered subsample to quantify its
influence on QALE. I choose $10.19 as A1C testing cost.40

[Table 10 about here.]

Table 10 shows counterfactual outcomes. QALE increases by 0.01 year, if he/she received
a medical test each quarter or every six months (Panel A and B). Performing the test less
frequently leads to a negligible effect in QALE (Panel C). Discussed in Section 5.5, this result
might be attributed to the fact that prediction error quickly returns to its long-term limit.
Prediction errors are 0% during the period the test is given, and 74.17% during the next period.
If the test is not given for three or four consecutive periods, prediction errors are 98.94% and
99.79% of its long-term counterpart, respectively. Panel D of Table 10 shows that mandatory
testing before an adjustment is bad for health. There is a small increase in testing frequency
from 36.88% to 37.66%, but testing frequency decreases significantly from 12.80% to 7.89%.
Thus, testing requirements before adjustment discourage an adjustment choice, thus leading to
poor diabetes management.

To assess their cost-effectiveness, I compute incremental cost-effectiveness ratios (ICER):
that of incremental cost ($) to incremental effectiveness (quality-adjusted life-year). It is con-
sidered cost-effective if the cost per QALY gained is lower than a certain threshold (Neumann,
Cohen and Weinstein, 2014). Table 10 shows that, except mandatory testing before adjust-
ment (Panel D), all ICERs of regular testing (Panel A-C) are lower than the $100,000 threshold,
thus indicating they are cost-effective diabetes management. Testing every quarter (Panel A),
however, does not meet the conventional $50,000 threshold. Because performing the test every
year (Panel C) not only improves health outcomes but saves testing costs, its ICER is negative.
Comparing their incremental benefits, however, show performing the test every six months is
the most cost-effective diabetes care, with a net benefit of $457.19 over ten years.41 This result
corroborates medical literature that suggests that performing an A1C test at least every six
months is good practice for proper diabetes care (American Diabetes Association, 2019). It
also suggests that biannual testing rates may be considered for quality measures instead.42

40It is from the Medicare clinical laboratory fee schedule (CLFS) for 2019, which is based on weighted
median rates. Source: “Clinical Laboratory Fee Schedule,” Centers for Medicare & Medicaid Services, 2019, ac-
cessed at https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/index.html
on 11/13/2019.

41It is robust to alternative per-year QALE thresholds: $50,000 to $250,000.
42It is not uncommon that interventions give modest gains in health outcomes; UK Prospective Diabetes

Study Group (1998) and Clarke et al. (2004) show that intensive blood-glucose control with oral medications
and insulin injections lowered an 11% reduction in an A1C level and increased QALE by 0.10-year, over ten
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7 Conclusions

I study the role of medical testing on healthcare performance. I develop a dynamic model in
which a provider optimally performs a test for treatment choices. Test results help her make
informed treatment decisions, but a fixed testing cost must be incurred, rationalizing that in-
frequent testing leads to additional dispersion of health measures over time, and explaining
a provider’s propensity to perform a test regularly. I combine the empirical framework with
matched provider-patient data on testing prescription decisions, and a standardized health mea-
sure. I find that provider fixed effects and provider-specific heteroskedasticity explain 11% of
the dispersion in blood sugar levels, and low-performing providers, in terms of large variance of
the error term, tend to under-test. Structural estimates have substantial heterogeneity across
provider and patient types. I also find that without medical testing, prescription choices are
not necessarily inaccurate, underscoring the role of information acquisition through medical
testing. Counterfactual exercises show that with the requirement that an A1C test must be
performed every six months, patients’ blood sugar levels would be well controlled: its incre-
mental cost-effectiveness ratio is $11,018.66 per quality-adjusted life-year (QALY), far lower
than the $100,000 threshold.

years, indicating even aggressive treatments cause modest QALE improvement. QALE gains from screening are
around 0.01-0.02 years in different settings (The CDC Diabetes Cost-Effectiveness Study Group, 1998; Hoerger
et al., 2004; Nicholson et al., 2005; Shono et al., 2018). As their cost-effectiveness is also dependent on costs,
however, low costs of testing or screening still make the interventions very cost-effective. See Li et al. (2010)
for review.
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Table 1: Overview of the Datasets
‌

Health Screening Claims
Observations Observations Patients Providers Movers Movers/Providers

A. Full Sample, Quarterly Dataset
6,383,849 77,429,081 2,994,766 38,754 1,814,274 46.8151

B. Full Sample, Yearly Dataset
5,863,047 8,823,970 2,582,646 31,681 902,123 28.4752

C. Migrants Subsample, Yearly Dataset
2,480,559 3,681,833 596,315 21,408 65,487 3.0560

‌
Notes: The quarterly dataset includes all observations that satisfy criteria in Section 2.3.
Patient-quarters with no medical records but with remaining prescription drugs during at least
one day of the quarter are also included. Yearly datasets do not include patient-years in which at
least one patient-quarter observation is missing during a year. Patient-years that the National
Health Screening is not offered are not included in the yearly dataset for estimation of the
AKM model (1).
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Table 2: Contributions of Patient and Provider Heterogeneity in Blood Sugar Levels
‌

Value Share

A. Full Sample, AKM
Overall V ar(yit) 0.0791 100.00%

Patient FE V ar(αi + xitβ) 0.0413 52.16%
Provider FE V ar(ψj) 0.0020 2.58%

Sorting 2Cov(αi + xitβ, ψj) -0.0008 -1.00%
Residual V ar(εit) 0.0366 46.26%

No Heteroskedasticity V ar(ε̃it) 0.0294 37.20%

B. Migrants Subsample, BLM
Overall V ar(yit) 0.0689 100.00%

Patient FE V ar(αi + xitβ) 0.0374 54.34%
Provider FE V ar(ψj) 0.0059 0.85%

Sorting 2Cov(αi + xitβ, ψj) 0.0001 1.45%
Residual V ar(εit) 0.0299 43.35%

No Heteroskedasticity V ar(ε̃it) 0.0240 34.79%
‌
Notes: In Panel A, estimates of the AKM (1) model using the full sample are shown. In
Panel B, a classification method (Bonhomme, Lamadon and Manresa, 2019a) is applied to
the migrants subsample. K = 10 clusters are used. For classification, I evaluate provider-
level empirical cumulative distributions at 20 grid points, from Q5 to Q95 of the unconditional
empirical distribution of log blood sugar levels. Once providers are clustered using the k-
means clustering algorithm, the AKM model (1), with full patient fixed effects and K = 10
provider-class fixed effects, is estimated. For both datasets, singleton observations are dropped
for reliable estimation (Correia, 2015). Provider level and provider-class level variances of ε̂it
are computed to measure provider-level heteroskedasticity. ˆV ar(ε̃it) are computed to satisfy
Equation (3).
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Table 3: Patient- and Provider-Level Testing Frequencies
‌

A. Patient-Years
0Q 1Q 2Q 3Q 4Q

Semi-Quantitative 15.68% 7.84% 7.31% 11.50% 57.66%
A1C 27.79% 27.08% 22.19% 14.35% 8.58%

Quantitative 48.79% 23.15% 12.72% 7.54% 7.80%
A1C, Quantitative 23.99% 26.04% 22.36% 15.31% 12.31%
B. Provider-Quarters

≤ 20% ≤ 40% ≤ 60% ≤ 80% ≤ 100%
Semi-Quantitative 9.64% 7.00% 6.22% 17.63% 59.52%

A1C 21.44% 38.10% 22.15% 13.69% 4.62%
Quantitative 51.07% 26.01% 9.57% 7.38% 5.96%

A1C, Quantitative 16.61% 34.35% 26.01% 13.28% 9.76%
‌
Notes: Semi-quantitative tests include point-of-care (POC) blood glucose monitoring conducted
by a provider. Panel A uses the yearly dataset for patient-level testing frequencies. Patient-
years that the National Health Screening is not offered are also included. Panel B uses the
quarterly dataset in Table 1. For each provider, I compute portions of all patient-quarters that
receive a medical test. Each column in Panel B is the raw frequency of providers performing
the test.
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Table 4: Predictors of Provider Heterogeneity
‌

Full Sample Migrants Subsample

A. Provider Fixed Effects (ψ̂j)
A1C Test -0.0090 -0.0091 -0.0016 -0.0016

(0.0000) (0.0000) (0.0000) (0.0000)
Adjustments -0.0016 0.0003 0.0000 0.0004

(0.0000) (0.0000) (0.0000) (0.0000)
R2 0.0626 0.0007 0.0626 0.0066 0.0000 0.0068
N 5,192,761 2,078,763

B. Heteroskedastic Errors (σ̂j)
A1C Test -0.0032 -0.0033 -0.0003 -0.0003

(0.0000) (0.0000) (0.0000) (0.0000)
Adjustments 0.0009 0.0016 0.0000 0.0001

(0.0000) (0.0000) (0.0000) (0.0000)
R2 0.0251 0.0007 0.0274 0.0034 0.0000 0.0036
N 5,192,761 2,078,763

‌
Notes: Estimates of provider fixed effects (ψ̂j) and heteroskedastic errors (σ̂j) in Table 2 are
used as dependent variables. Two regressors presented above are patient-level count variables,
with a maximum of four. Standard errors appear in parentheses.
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Table 5: Characteristics of Testing Clinics
‌

Provider-level Mean Number of A1C Tests
Year of Entry (≥ 2002) 0.0358

(0.0001)
Year of Entry < 2002 -0.1032

(0.0008)
Specialist in 0.4390
Internal Medicine (0.0006)
Has the A1C Device 0.3314

(0.0007)
R2 0.1728
N 5,362,386

‌
Notes: Provider-level average number of A1C tests are used as an outcome variable. Obser-
vations are weighted by the number of patient-years. The year of entry variable is the month
a clinic appears for the first time in the dataset, divided by 12. The ‘Year of Entry < 2002’
variable is an indicator of whether the clinic is observed in January 2002, the first month in the
dataset. The ‘Specialist in Internal Medicine’ is an indicator of whether there is at least one
specialist in internal medicine working at the clinic. The ‘Has the A1C Device’ is one if and
only if at least one A1C test is performed and 50% of all A1C tests are not out-sourced during
a year. Standard errors appear in parentheses.
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Table 6: Overview of Bi-clustered Subsamples
‌

Patient Full Low High
Provider Sample Low High Low High

Observation 37.7816% 15.4093% 42.7184% 42.6859% 77.6453%
Adjustment 15.1313% 12.4947% 14.6085% 17.9929% 17.9879%

Patient-Quarter 77,429,081 32,374,809 12,852,126 17,816,238 14,385,908
‌
Notes: Raw frequencies of observation and adjustment for each patient-provider type pair are
shown. Patient and provider types are clustered, minimizing Equation (13). I apply the k-
means algorithms iteratively. I classify providers, minimizing objective function (13), net of
patient-level centroids. Given provider types, I find patient types, minimizing the objective.
Iterative k-means clustering is repeated until convergence. Fifty starting values of provider
types are used. Indicators of an A1C test and prescription adjustments are used as moments.
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Table 7: Predictors of Testing and Adjustment
‌

Patient Full Low High
Provider Sample Low High Low High

A. A1C Test
Test Conducted 0.7609 -0.1284 -0.2717 -0.5078 -0.3067

Last Period (0.0005) (0.0016) (0.0012) (0.0011) (0.0017)
N 69,276,161 29,157,573 11,539,152 15,640,261 12,939,175

B. Adjustment
log(Blood Sugar Level) -5.9995 -4.5516 -5.0601 -7.0111 -10.6458

(0.0738) (0.1176) (0.2014) (0.1412) (0.1776)
log(Blood Sugar Level)2 0.7215 0.5565 0.7344 0.8330 1.2123

(0.0073) (0.0116) (0.0199) (0.0139) (0.0177)
N 6,383,848 2,593,459 1,012,914 1,198,807 1,578,668

‌
Notes: The table shows estimates from logistic regression. In Panel A, all patient-quarters
staying at the provider treated during the last quarter are used for estimation. In Panel B, I
use all patient-quarters with observed blood sugar levels. Standard errors appear in parentheses.
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Table 8: Structural Estimates
‌

Patient Full Low High
Provider Sample Low High Low High

E[y1] 4.8504 4.8911 4.8460 4.8933 4.9017
(0.0025) (0.0036) (0.0050) (0.0049) (0.0166)

σy1 1.0798 1.0273 1.1453 0.9250 1.1186
(0.0181) (0.0178) (0.0354) (0.0222) (0.0340)

σw 0.1230 0.1117 0.1244 0.1228 0.1266
(0.0007) (0.0008) (0.0011) (0.0012) (0.0014)

σv0 0.1462 0.1922 0.1873 0.1895 0.2212
(0.0073) (0.0070) (0.0161) (0.0110) (0.0232)

γ 1.6530 1.7225 1.4815 2.6780 1.8847
(0.0683) (0.0748) (0.1095) (0.1430) (0.1264)

y∗ 4.8650 4.8760 4.8600 4.8669 4.8523
(0.0020) (0.0025) (0.0038) (0.0029) (0.0033)

FO 0.5577 1.8225 0.3688 0.4390 -1.1971
(0.0034) (0.0087) (0.0087) (0.0097) (0.0097)

FA 2.5848 3.0028 2.6622 2.4444 2.2162
(0.0159) (0.0207) (0.0276) (0.0236) (0.0240)

exp(y∗) 129.6746 131.1059 129.0306 129.9212 128.0393
(0.2658) (0.3333) (0.4918) (0.3799) (0.4170)

FO/γ 0.3374 1.0581 0.2489 0.1639 -0.6351
(0.0140) (0.0458) (0.0191) (0.0095) (0.0428)

FA/γ 1.5637 1.7433 1.7970 0.9127 1.1759
(0.0611) (0.0713) (0.1225) (0.0486) (0.0766)

N 7986 6338 2578 4369 2922
‌
Notes: N denotes all patient-provider pairs in the sample. I use 0.1% (full sample) and 0.2% (bi-
clustered subsamples) subsamples for structural estimation to reduce computational burden.
500 and 300 Halton draws for value function iterations and simulated maximum likelihood,
respectively, are used. Once the value function is evaluated at 30× 29 grid points, I use cubic
spline interpolation and extrapolation to evaluate it at other points. Symmetry of the value
function around y∗ is imposed. Outlier glucose levels have been censored. Standard errors
appear in parentheses. For functions of structural estimates, delta method standard errors are
shown.
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Table 9: Model Performance: Medical Testing and Adjustments
‌

Patient Provider Actual Simulated

A. Conditional on Patient and Provider Types
Observation (%) Low Low 15.4093 16.5662

High 42.7184 44.3057
High Low 42.6859 41.5194

High 77.6453 74.4861
Adjustment (%) Low Low 12.4947 13.8691

High 14.6085 15.9127
High Low 17.9929 18.6924

High 17.9879 20.0759

B. Incorporate Mobility
Observation (%) Low - 23.1698 24.6557

High - 58.3036 54.7746
Adjustment (%) Low - 13.0954 14.4651

High - 17.9907 19.2487
‌
Notes: Panel A shows observation and adjustment frequencies for each patient and provider
type. Panel B shows frequencies for each patient type only. Panel B combines the mobility
model in Equation (??) and the structural model. For each patient type, at the beginning of
each period, a mobility decision is made before a provider makes a testing choice.
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Table 10: Mandatory Testing
‌

Increase in QALE (years) Incremental Incremental Incremental
Q50 Q75 Q90 Mean Cost ($) Cost-effectiveness Ratio ($/QALE) Benefit ($)

A. Performed Every Quarter
0.00 0.01 0.02 0.01 272.41 53140.23 237.63

B. Performed Every 6 Months
0.00 0.01 0.01 0.01 56.61 11018.66 457.19

C. Performed Every Year
0.00 0.00 0.00 0.00 -51.29 -33340.78 205.11

D. Mandatory Testing before Adjustment
0.00 -0.03 -0.07 -0.01 3.35 -344.72 976.11

‌
Notes: All outcomes except testing choices in Panel A-C are simulated from the structural
model. In Panels A-C, predetermined testing choices are implemented regardless of the utility
of medical testing. In Panel D, a provider optimally makes a testing choice each period.
However, she cannot adjust if no testing choice is made. For each patient, I compute an
average blood sugar level over 40 quarters. To translate the distribution of average blood sugar
levels over 10 years to quality-adjusted life expectancy (QALE), I use Clarke et al. (2004)’s
QALE computation that those who were randomly assigned intensive policy that resulted in
an 11% reduction in an A1C level over 10 years experience 0.10-year QALE increase. $100,000-
per-year threshold is used to monetize QALE and compute incremental benefits (Neumann,
Cohen and Weinstein, 2014). I choose $10.19 as A1C testing cost, which is from the Medicare
clinical laboratory fee schedule (CLFS) rates for 2019.
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Figure 1: Distribution of Blood Sugar Levels Among Patients with Diabetes
‌
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‌
Notes: Observations are weighted by the inverse of the number of observations for each pa-
tient. Dotted lines represent the target level (i.e., 80-130mg/dL) that clinical guidelines suggest
(American Diabetes Association, 2019).

48



Figure 2: Survival Probability of No Prescription Adjustments
‌
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‌
Notes: An indicator of prescription adjustment is one if and only if a composition of prescrip-
tion drugs changes in comparison to that during the last quarter. The composition consists
of 9 classes of anti-diabetic medications: Biguanides, Sulfonylureas, DPP-4 inhibitors, Insulin,
Alpha-Glucosidase Inhibitors, Thiazolidinediones, Nonsulfonylurea secretagogues, GLP-1 ag-
onists, and SGLT-2 inhibitors. A patient’s entire treatment history is used during survival
analysis. Prescription adjustment at t = 1 is excluded.
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Figure 3: Two-Stage Decision Problem
‌
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‌

• ŷt|t = E[yt|zt, at−1]: best prediction of yt based on zt = (z1, ..., zt) and at−1 = (a1, ..., at−1)

• σ̂2
t|t = V ar(yt|zt, at−1): prediction error of ŷt|t

• (ŷt+1|t, σ̂
2
t+1|t): state variables from a provider’s viewpoint
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Figure 4: Net Utility of Medical Testing and Adjustment
‌
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‌
Notes: Panels A and B are plotted using full sample estimates from Table 8. Logit errors are
added to rationalize idiosyncratic choices. 30 × 29 grid points and cubic spline interpolation
are used to solve Equation (12). Symmetry of the value function around y∗ is imposed.
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Figure 5: Prediction Errors over Time
‌
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Notes: The blue line denotes the prediction error after a testing choice is made, σ2

t|t. The red
dashed line represents the variance of a signal received after the testing choice. No adjustment
and testing choices are made, except for the test conducted at t = 10. Full sample estimates
in Table 8 are used.
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Figure 6: Model Performance: Blood Sugar Levels
‌
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‌
Notes: The blue and red line denote a distribution of blood sugar levels in actual and simulated
data, respectively. The simulated data combine the mobility model in Equation (??) and the
structural model. For each patient type, at the beginning of each period, a mobility decision is
made before a provider makes a testing choice.
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[Table 11 about here.]

[Table 12 about here.]

[Table 13 about here.]

[Figure 7 about here.]
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Table A.1: Selection Issues in Health Screening Data
‌

A. Takes the Health Screening
A1C Tests 0.0017 0.0019

(0.0002) (0.0002)
Adjustments -0.0010 -0.0014

(0.0002) (0.0002)
R2 0.5667 0.5667 0.5667
N 8,823,970 8,823,970 8,823,970

Patient FE Y Y Y
Year FE Y Y Y

B. Performs the A1C Test C. Adjusts Prescriptions
Takes the Health Screening 0.0523 0.6794 0.0178 2.1236

(0.0002) (0.0306) (0.0001) (0.0247)
Takes the Health Screening -0.3139 -0.9970
× log(Blood Sugar Level) (0.0123) (0.0099)

Takes the Health Screening 0.0378 0.1154
× log(Blood Sugar Level)2 (0.0012) (0.0010)

R2 0.2538 0.2539 0.1083 0.1097
N 77,429,081 77,429,081 77,429,081 77,429,081

Patient FE Y Y Y Y
Year-Quarter FE Y Y Y Y

‌
Notes: The table shows estimates of fixed effects linear regression models. In Panel A, a
dependent variable of the regression using the yearly dataset is an indicator of whether a
patient takes the National Health Screening. All patient-years that the health screening is
not offered are not included. In Panel B, dependent variables are indicators of the A1C test
and prescription adjustment during the quarter, respectively. The interacted variables are
zero whenever the health screening is not conducted and therefore blood sugar levels are not
observed. Standard errors appear in parentheses.
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Table A.2: Contributions of Patient and Provider Heterogeneity in Blood Sugar Levels, Full
Sample

‌
Value Share

A1. Full sample, K = 20 clusters
Overall V ar(yit) 0.0791 100.00%

Patient FE V ar(αi + xitβ) 0.0406 51.28%
Provider FE V ar(ψj) 0.0006 0.74%

Sorting 2Cov(αi + xitβ, ψj) 0.0010 1.21%
Residual V ar(εit) 0.0370 46.77%

No Heteroskedasticity V ar(ε̃it) 0.0292 36.91%

A2. Full sample, K = 10 clusters, 10 model-based iterations
Overall V ar(yit) 0.0791 100.00%

Patient FE V ar(αi + xitβ) 0.0407 51.47%
Provider FE V ar(ψj) 0.0017 2.15%

Sorting 2Cov(αi + xitβ, ψj) 0.0000 -0.01%
Residual V ar(ϵit) 0.0367 46.39%

No Heteroskedasticity V ar(ε̃it) 0.0340 42.96%

A3. Full sample, K = 10 clusters
Overall V ar(yit) 0.0791 100.00%

Patient FE V ar(αi + xitβ) 0.0409 51.70%
Provider FE V ar(ψj) 0.0004 0.56%

Sorting 2Cov(αi + xitβ, ψj) 0.0007 0.92%
Residual V ar(ϵit) 0.0370 46.82%

No Heteroskedasticity V ar(ε̃it) 0.0316 39.99%
‌
Notes: For a robustness check, a classification method (Bonhomme, Lamadon and Manresa,
2019a) is applied to both the full sample and the migrants subsample. For classification, I
evaluate provider-level empirical cumulative distributions at 20 grid points, from Q5 to Q95 of
the unconditional empirical distribution of log blood sugar levels. Once providers are clustered
using the k-means clustering algorithm, the AKM model (1), with full patient fixed effects
and K provider-class fixed effects, is estimated. For estimates with model-based iterations,
for given estimates, I find an alternative classification, minimizing the mean squared error. I
then estimate the AKM model based on the new classification. For both datasets, singleton
observations are dropped for reliable estimation (Correia, 2015). Provider and provider-class
level variances of ε̂it are computed to measure provider-level heteroskedasticity. ˆV ar(ε̃it) are
computed to satisfy Equation (3).
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Table A.3: Contributions of Patient and Provider Heterogeneity in Blood Sugar Levels, Mi-
grants Subsample

‌
Value Share

B1. Migrants sample, K = 20 clusters
Overall V ar(yit) 0.0689 100.00%

Patient FE V ar(αi + xitβ) 0.0371 53.91%
Provider FE V ar(ψj) 0.0007 1.01%

Sorting 2Cov(αi + xitβ, ψj) 0.0012 1.74%
Residual V ar(ϵit) 0.0299 43.34%

No Heteroskedasticity V ar(ε̃it) 0.0224 32.57%

B2. Migrants Subsample, K = 10 clusters, 10 model-based iterations
Overall V ar(yit) 0.0689 100.00%

Patient FE V ar(αi + xitβ) 0.0410 59.48%
Provider FE V ar(ψj) 0.0056 8.09%

Sorting 2Cov(αi + xitβ, ψj) -0.0073 -10.62%
Residual V ar(ϵit) 0.0297 43.05%

No Heteroskedasticity V ar(ε̃it) 0.0252 36.56%
‌
Notes: For a robustness check, a classification method (Bonhomme, Lamadon and Manresa,
2019a) is applied to both the full sample and the migrants subsample. For classification, I
evaluate provider-level empirical cumulative distributions at 20 grid points, from Q5 to Q95 of
the unconditional empirical distribution of log blood sugar levels. Once providers are clustered
using the k-means clustering algorithm, the AKM model (1), with full patient fixed effects
and K provider-class fixed effects, is estimated. For estimates with model-based iterations,
for given estimates, I find an alternative classification, minimizing the mean squared error. I
then estimate the AKM model based on the new classification. For both datasets, singleton
observations are dropped for reliable estimation (Correia, 2015). Provider and provider-class
level variances of ε̂it are computed to measure provider-level heteroskedasticity. ˆV ar(ε̃it) are
computed to satisfy Equation (3).
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Figure A.1: Evidence of No Sorting
‌
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‌
Notes: Panels A and B show distributions of patients’ blood sugar levels by provider-class.
Clusters are those of Panel A3 of Table A.2 and B of Table 2, respectively.
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