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What we do in this paper

A new data set on hotel reservations at a luxury hotel
market (7 luxury hotels)
Traditional demand estimation OLS or IV fail to produce
reasonable estimates of demand
Formulate a dynamic programming model of optimal
dynamic hotel pricing
Use the Method of Simulated Moments (MSM)
Recover plausible estimates of the demand for hotels
despite the lack of valid instruments
Optimal price (by model) −→ Actual price (by hotel)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Occupancy rates vs ADR at hotel 0
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Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel pricing problem

A complex, dynamic optimization problem.
Further, these decisions must be updated very frequently .
“it has become clear that there is growing interest in
pricing and revenue optimization as a topic of study both
within business schools and management science
/operations research departments. ” (Phillips, 2005 Pricing
and Revenue Optimization)
However it is not clear the extent to which RMS (Revenue
Management System) depend on economic tools such
as dynamic programming and demand estimation
Can economics, using the tools of dynamic programming
and structural econometrics, bring new insights and
understanding and methodologies to the field of revenue
management?

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Demand estimation: key to revenue management

Optimal pricing depends critically on accurate knowledge
of customer demand

Recognizing the stochastic nature of demand and
bookings of potential customers in the market
Understanding customers’ evaluation of the relative
desirability of the competing hotels and their degree of
price sensitivity

Endogeneity on demand estimation
Regressions of hotel occupancy (Q) on hotel prices (P)→
spurious positively sloped demand functions
Few relevant instrumental variables (or Instrument-free
demand estimation by MacKay and Miller 2018)
Demand is given by a conditional probability distribution
which is generally nonlinear in prices

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Literature of Dynamic pricing

Theoretical model by Ivanov (2014), Anderson and Xie
(2012), Zhang and Lu (2013), and Zhang and Weatherford
(2016)
Optimal selling strategies using mechanism design when
buyers are forward looking (Board and Skrzypacz 2016)
Secondary market in MLB ticketing (Sweeting 2012) -
dynamic auction
Dynamic structural estimation approach in airline market
(Williams 2018) - monopoly route
Dynamic structural models with continuous decisions and
endogenous censoring by Merlo, Ortalo-Magne, and Rust
(2015) and Hall and Rust (2018)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Several aspects in hotel demand estimation

Perishable inventory—Flight tickets, Concert tickets, Food
Stochastic demand process—Probability/Non-static
Different types of customers—Leisure, Business, Group
Endogeneity of prices and demand—high positive
correlation between them
Data censoring problem—Number of potential customers
in the market
Seasonal effect / Demand shocks

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel Reservation Website Example

Best Available Rate (BAR)
Standard price with 24-hour advance free cancellation
"a rate available to the general public that does not require
pre-payment and does not impose cancellation or change
penalties and/or fees, other than those imposed as a result
of a hotel property’s normal cancellation policy." (Wikipedia)

Across Platform Parity Agreements (APPA)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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All available hotels in downtown Atlanta on March 25

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Filters : Luxury Hotels in Atlanta downtown

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Hotel Market Data

We obtained a detailed computerized reservation database
from a hotel in a major city, which we will refer to as Hotel
0.
We see every reservation and cancellation at this hotel
over a 37 month period: from October 2010 to October
2013.
In addition, the company purchased daily spot prices
(Best Available Rate, BAR) of its 6 closest competitors
from Market Vision an example observation

We also augmented this data on average reservation
prices and occupancy of its competitors from Smith
Travel Research (STR)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Stylized Fact of Hotel Data

7 hotels are competing in the neighborhood and they are
classified as luxury hotels.
Hotel 0’s price is below average in the competing hotels.
(Listing price) Hotel List

95% are standard rooms in hotel 0 Room type

Distinguishable customer type : Business, Leisure and
Group Customer type

Business customers hold key portion of this market.
(Weekday vs. Weekend) Customer share graph

Seasonality and co-movement in price Seasonality graph

comovement

Reservations and cancellation pattern varies by DBA (Day
before arrival) reservation cancellation

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Key Assumptions

No multi-night stay. We treat multi-night reservation as
several single-night reservations.
Rooms are homogeneous.
Hotel 0 sets BAR each day for each future arrival date.
Multiple segments of customers, indexed by
s ∈ {1, ...,S}

Segments differ only in arrival process, price elasticity and
exogenous discount rate σs
Customer of segment s wishing to book at Hotel 0 t-day
ahead pays ptσs. (t indicates Days Before Arrival, DBA)

Structural parameters are different across types of arrival
days, but same within

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
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Stochastic Arrival of Potential customers in the market

A total number of segment s customers rt,s arrive in the
market t days prior to occupancy.
rt,s follows exogenous distribution: Zero-inflated Negative
Binomial with parameters (γt ,s, φt ,s, µt ,s)

π(rt ,s = 0|γt ,s, φt ,s, µt ,s) = γt ,s + (1− γt ,s)× · · ·

· · ·
(

rt ,s + φt ,s − 1
rt ,s

)
qφt,s

t ,s (1− qt ,s)rt,s

π(rt ,s > 0|γt ,s, φt ,s, µt ,s) = (1− γt ,s)× · · ·

· · ·
(

rt ,s + φt ,s − 1
rt ,s

)
qφt,s

t ,s (1− qt ,s)rt,s

(1)
where qt ,s = φt ,s/(µt ,s + φt ,s).

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Choice Probability of hotel 0

Customers make static discrete choices about which hotel
to book at, with the choice probability to reserve at hotel
0 given by

Ps(pt , ρt ) =
1

1 + exp{αs + βs(σspt − σsρt )}
(2)

where pt is BAR price of hotel 0 at t,
ρt is the average of competing hotels’ BAR at t,
αs and βs are the choice probability parameters,
σs is an average discount rate for each type of consumer.

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Demand for hotel 0

Conditional on rt,s, the demand for hotel 0, is

ãt ,s ∼ bin(rt ,s,Ps(pt , ρt ))

at ,s = rt ,s · P(pt , ρt |αs, βs) =
rt ,s

1 + exp[αs − βs(σspt − σsρt )]
(3)

The unconditional demand for hotel 0 is

ft (at |pt , ρt ) =
∑
s∈S

∑
r≥a

(
rt ,s

at ,s

)
P(pt , ρt |αs, βs)a × · · ·

· · · [1− P(pt , ρt |αs, βs)](r−a)π(rt ,s|φt ,s, µt ,s)

(4)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Random Cancellation

Deterministic probability of cancellation
Exogenous variables
Effect by pt and ρt

The total number of cancellations t-day prior to occupancy,
ct , follows distribution ~ct ∼ et(c|nt)

The potential cancellation dist. c̃t ∼ et (c|nt , p̄t ,pt , ρt )

Strategic cancellation
Weak evidence
A high computational burden

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Enforcing capacity constraint

We assume Hotel 0 do not overbook, and thus ration
demand so that nt ≤ n with probability 1 for all t ≥ 0.
Mapping η implement this rationing. Number of new
reservations (n1t , ...,nSt ) is given by

(n1t , ...,nSt ) = η(nd
1t , ...,n

d
St , ct ,nt ,n) (5)

Law of motion for nt is

nt−1 = nt − ct +
∑

s

nst (6)

By construction nt−1 ≤ n with probablity 1

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Law of motion

ADR p̄t

pt−1 =
(nt − ct )pt +

∑
s nstδspt

nt−1

≡ λ(nt ,n1t , ...,nSt ,pt ,pt ) (7)

Competitors’ price ρt

ρt−1 ∼ h(ρ|ρt ) (8)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

DP model

Let Vt (n,p, ρ) be the maximal expected revenue Hotel 0
expects t days prior to occupancy, if its current occupancy
is n, the average price (ADR) of these n reservations is p
and the average BAR of its competitors is ρt .
On t = −1 (day after arrival) there are no further decisions
and hotel’s realized profit for that day can be calculated:

V−1(n,p, ρ) = min[n,n](p − ω)

where n is the hotel’s capacity and ω is the marginal cost of
servicing a room.

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Bellman equation

At the start of each day t = 0,1, . . . ,T prior to arrival, the
hotel observes (nt ,pt , ρt ) and sets its (BAR) pt to maximize
profit
For t = −1 , V−1(n,p, ρ) = n · (p − ω)

For t = 0,1,2, ...,T

Vt (n,p, ρ) =

max
p

∫
ρ′

∑
nd

1

...
∑
nd

S

∑
c

Vt−1(n′,p′, ρ′)

·et (c|n, p̄,p, ρ) · f1t (nd
1 |p, ρ).. · fSt (nd

S|p, ρ) · ht (ρ
′|ρ).(9)

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Property of DP

Theorem 1 For each t ∈ {1, . . . ,T} the value function Vt
has the representation

Vt (n,p, ρ) = V f
t (n,p, ρ) + V b

t (n,p, ρ) (10)

where V f
t is the “forward looking component” that equals

the expected profits from rooms that are not yet booked,
whereas V b

t is the “backward looking component” that
equals expected profits from rooms that are already
booked.

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Property of DP

Assumption 1 The conditional probability distributions for
the number of new transient and group reservation
requests, rd

t and gd
t are independent of the hotel’s ADR p.

Assumption 2 (Exogenous cancellations) The
conditional probability distributions for the number of
cancellations, ct , by existing customers does not depend
on the hotel 0’s BAR p or ADR p.
Assumption 2 holds if the conditional probability density
et (c|n,p, ρ,p) in the Bellman equation (9) does not depend
on (p,p). We do not have strong evidence that cancellation
decisions depend on hotel 0’s BAR and ADR.

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Property of DP

Theorem 2 If Assumption 1 and 2 hold, then for each
t ∈ {1, . . . ,T} the forward looking component of the value
function V f

t is independent of p, i.e. it can be written as
V f

t (n, ρ) and depends on (n, ρ) but not p.
Theorem 3 If Assumptions 1 and 2 hold then for each
t ∈ {1, . . . ,T} the optimal decision rule for BAR p∗t is
independent of p, i.e. it can be written as p∗t (n, ρ) and
depends on (n, ρ) but not p.

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Solution to a simple example at t = 0

Suppose hotel 0 knows that on day t = 0 that k0 = 50
customers will be arriving in this market and deciding
where to stay.
Thus, r̃0 ∼ bin(50,P0(p, ρ)) is the probability distribution for
demand for Hotel 0.
Expected demand is D0(p, ρ) = 50 ∗ P0(p, ρ), but the hotel
must enforce overbooking constraint r̃0 ≤ n − n (remaining
unsold rooms) with probability 1.
Hotel’s problem is

V f
0(n, ρ) = max

p
E {min[r̃0(p, ρ),n − n](p − ω)}

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Expected demand at t = 0, ρ = 300 and ρ = 350
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Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Optimal prices at t = 0, ρ = 300 and ρ = 350
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Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)



28/ 65

Dynamic Pricing and Revenue Management
Dynamic Hotel Pricing

Estimation results

Hotel reservation data
Dynamic programming model

Optimal BAR t = 0
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Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Hotel reservation data
Dynamic programming model

Optimal profit V0(n,p, ρ)
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Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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How we estimated the model

MSM (Method of Simulated Moments)

1 Set up the parameters (Including Initial Guess)

2 Find the optimal prices and value function by solving DP

3 Generate simulation data

4 Find the distance between simulation data and actual data

5 Update the parameters which enable the distance shorter

Repeat 2-5 until convergence

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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List of moments

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Estimate of elasticity

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Fit of model: occupancy on busiest weekends
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Fit of model: BAR on least busy weekdays
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Fit of model: BAR on most busy weekdays
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Fit of model: BAR on busiest weekends
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Model vs data on specific busiest weekend Day21

Mean Trajectory for Day = 21, sample31
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Model vs data on specific busiest weekend Day1

Mean Trajectory for Day = 1, sample31
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Model vs data on specific least-busy weekday 1
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Model vs data on specific least-busy weekday 21

Mean Trajectory for Day = 21, sample00
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Actual vs predicted Occupancy: 5/26 - 9/3/2012 (final)

Time Series of Occupancy , 2012-05-26 to 2012-09-03 
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Actual vs predicted Revenues: 5/26 - 9/3/2012 (final)

Time Series of revenue, 2012-02-16 to 2012-05-26 
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Counter-factual : Constant price (hotel 0), sample31
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Counter-factual : optimal price±20%, sample31
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Counter-factual : optimal price±20%, sample00
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Counter-factual : occupancy distribution (full sample)
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Counter-factual : revenue distribution (full sample)
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Conclusion

Introduced a DP model for hotel pricing, which allows for
competition, heterogeneous demand and intertemporal
price discrimination

Sensible estimation of demand

Accurate prediction of reservation/price dynamics
Future works

allow for full equilibrium
relax the assumption of optimality

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Firms in the Local Luxury Hotel Market

back
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List of Data Sets

Table 2: Data description

Data The first day
of occupancy

The last day
of occupancy Observations Description

market vision 2010-09-21 2014-08-13 609,181 competitors’ price
reservation raw 1 2009-09-01 2013-10-31 201,176 reservations detail information
cancellation raw 2 2009-09-01 2013-10-31 29,241 cancel detail information
daily pick-up report 2010-09-16 2014-05-21 475,187 daily revenue report
STR market data 2010-01-01 2014-12-31 1,731 competitors’ occupancy

Data range 2010-10-01 2013-10-31 37 months

2.1 Market vision

One key component of hotel pricing is the pricing of other competitors. After con-
sidering the price of other hotels , the hotel needs to modify their own prices to not
lose prospective consumers. Market vision data is collected for this reason. The
Rubicon group establishes this market vision data by monitoring the competition
and put their client hotel in a competitive position. Market vision data contains all
channels such as GDS (global distribution system), travel websites and hotel web-
sites. Although it collects only the lowest priced rooms for each hotel, they handle
many variations of room products such as AAA, Adv purch, Any Non-qual, Gov,
Unrest/ No Merch, and Unrestricted. The detailed descriptions for the above room
products is as followed,

AAA Products specifically identified as AAA or CAA, using keyword variations
of AAA, CAA, auto club, and so on.

Adv Purch Products requiring advance purchase or purchase at time of booking,
using keywords such as deposit required, pre-payment, full payment due, and so
on. Booking before 21-7 days and 10-15

Any Non-Qual Lowest of Unrestricted, Adv Purch and Merchant Model com-
bined. Excludes qualified rates that require membership, association or identifica-
tion. Also excludes government. Sometimes it just indicates the Advance purchase.

Gov Products specifically identified as government rates, using keyword varia-
tions of government and military. Includes but does not differentiate among fed-
eral, state and local rates.

6

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Customer share by type
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Example Arrival Date: Busy Weekend 11/18/2010

Date : 2010-11-18

 $379.00

 99.1 %Hotel Capacity (100%)

051015202530354045

Days before arrival (DBA)

0

50

100

150

200

250

300

350

400

450

B
A

R
 (

$)

Occupancy rate(%)
Best Available Rate
Competitors price average

back
Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)



53/ 65

Dynamic Pricing and Revenue Management
Dynamic Hotel Pricing

Estimation results

Multiple Products: Room Types
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Multiple Segments: Reservation/Contract Types
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Reservation Frequencies
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Anual Cycle: BAR
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Anual Cycle: Occ, Avg Daily Rate (ADR) and Rev

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)
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Weekly Cycles: Occ and ADR
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Reservation Dynamics: by Type of Day
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Reservation Dynamics: by Segment
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Cancellation Dynamics
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Co-movement in Occupancy Rate
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Co-movement in ADR
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Regression of ADR0

Variable Estimate Standard Error
constant 143.7 3.1
OCC0 0.68 0.04

N = 1277, R2 = 0.17

Variable Estimate Standard Error
constant 30.07 2.19
ADRc 0.76 0.011
OCC0 −0.013 0.021

N = 1277, R2 = 0.82
(adding monthly and daily dummies raises R2 to 0.86)
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Downward-sloping Demand?
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