Optimal Dynamic Hotel Pricing

Sungjin Cho, Seoul National University Gong Lee, Korea Development Institute John Rust, Georgetown University Mengkai Yu, JD.com

> Economics Seminar Chung-Ang University

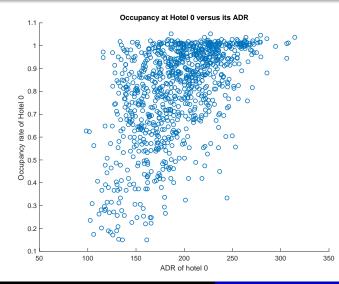
> > April 27, 2021

What we do in this paper

- A new data set on hotel reservations at a luxury hotel market (7 luxury hotels)
- Traditional demand estimation OLS or IV fail to produce reasonable estimates of demand
- Formulate a **dynamic programming model** of optimal dynamic hotel pricing
- Use the Method of Simulated Moments (MSM)
- Recover plausible estimates of the demand for hotels despite the lack of valid instruments
- Optimal price (by model) Actual price (by hotel)

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Occupancy rates vs ADR at hotel 0



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Hotel pricing problem

- A complex, dynamic optimization problem.
- Further, these decisions must be updated very *frequently*.
- "it has become clear that there is **growing interest** in pricing and revenue optimization as a topic of study both within business schools and management science /operations research departments." (Phillips, 2005 *Pricing and Revenue Optimization*)
- However it is **not clear** the extent to which **RMS (Revenue Management System) depend on economic tools** such as *dynamic programming* and *demand estimation*
- Can economics, using the tools of **dynamic programming** and structural econometrics, bring new insights and understanding and methodologies to the field of revenue management?

Demand estimation: key to revenue management

- Optimal pricing depends critically on accurate knowledge of customer demand
 - Recognizing the **stochastic nature of demand** and bookings of potential customers in the market
 - Understanding customers' evaluation of the relative desirability of the competing hotels and their degree of price sensitivity
- Endogeneity on demand estimation
 - Regressions of hotel occupancy (*Q*) on hotel prices (*P*) → spurious positively sloped demand functions
 - Few relevant instrumental variables (or Instrument-free demand estimation by MacKay and Miller 2018)
 - Demand is given by a conditional probability distribution which is generally **nonlinear in prices**

Literature of Dynamic pricing

- Theoretical model by Ivanov (2014), Anderson and Xie (2012), Zhang and Lu (2013), and Zhang and Weatherford (2016)
- Optimal selling strategies using mechanism design when buyers are forward looking (Board and Skrzypacz 2016)
- Secondary market in MLB ticketing (Sweeting 2012) dynamic auction
- Dynamic structural estimation approach in airline market (Williams 2018) monopoly route
- Dynamic structural models with continuous decisions and endogenous censoring by Merlo, Ortalo-Magne, and Rust (2015) and Hall and Rust (2018)

Several aspects in hotel demand estimation

- Perishable inventory—Flight tickets, Concert tickets, Food
- Stochastic demand process—Probability/Non-static
- Different types of customers—Leisure, Business, Group
- Endogeneity of prices and demand—high positive correlation between them
- Data censoring problem—Number of potential customers in the market
- Seasonal effect / Demand shocks

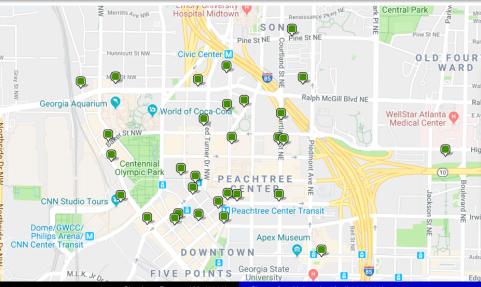
Hotel Reservation Website Example

- Best Available Rate (BAR)
 - Standard price with 24-hour advance free cancellation
 - "a rate available to the general public that does not require pre-payment and does not impose cancellation or change penalties and/or fees, other than those imposed as a result of a hotel property's normal cancellation policy." (*Wikipedia*)
- Across Platform Parity Agreements (APPA)

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Estimation results

All available hotels in downtown Atlanta on March 25



Cho, Lee, Rust and Yu (2018)

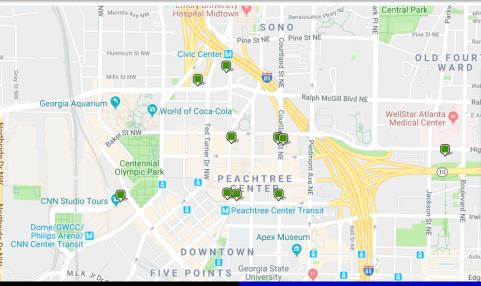
Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management

ynamic Hotel Pricing

Estimation results

Filters : Luxury Hotels in Atlanta downtown



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Hotel reservation data Dynamic programming model

Hotel Market Data

- We obtained a detailed *computerized reservation database* from a hotel in a major city, which we will refer to as **Hotel** 0.
- We see every reservation and cancellation at this hotel over a **37 month period**: from October 2010 to October 2013.
- In addition, the company purchased daily spot prices (Best Available Rate, BAR) of its 6 closest competitors from *Market Vision* • an example observation
- We also augmented this data on average reservation prices and **occupancy of its competitors** from *Smith Travel Research* (STR)

Hotel reservation data Dynamic programming model

Stylized Fact of Hotel Data

- 7 hotels are competing in the neighborhood and they are classified as luxury hotels.
- Hotel 0's price is **below average** in the competing hotels.
 (Listing price) HotelList
- 95% are standard rooms in hotel 0 Room type
- Distinguishable customer type : Business, Leisure and Group Customer type
- Business customers hold key portion of this market. (Weekday vs. Weekend) • Customer share • graph
- Seasonality and co-movement in price Seasonality graph

▶ comovement

 Reservations and cancellation pattern varies by DBA (Day before arrival) • reservation • cancellation

Hotel reservation data Dynamic programming model

Key Assumptions

- No multi-night stay. We treat multi-night reservation as several single-night reservations.
- Rooms are homogeneous.
- Hotel 0 sets *BAR* each day for each future arrival date.
- Multiple segments of customers, indexed by $s \in \{1, ..., S\}$
 - Segments differ only in arrival process, price elasticity and exogenous discount rate σ_s
 - Customer of segment s wishing to book at Hotel 0 t-day ahead pays ptσ_s. (t indicates Days Before Arrival, DBA)
- Structural parameters are different across types of arrival days, but same within

Stochastic Arrival of Potential customers in the market

- A total number of segment s customers r_{t,s} arrive in the market t days prior to occupancy.
- r_{t,s} follows exogenous distribution: Zero-inflated Negative Binomial with parameters (γ_{t,s}, φ_{t,s}, μ_{t,s})

$$\pi(\mathbf{r}_{t,s} = \mathbf{0}|\gamma_{t,s}, \phi_{t,s}, \mu_{t,s}) = \gamma_{t,s} + (1 - \gamma_{t,s}) \times \cdots$$
$$\cdots \begin{pmatrix} \mathbf{r}_{t,s} + \phi_{t,s} - 1 \\ \mathbf{r}_{t,s} \end{pmatrix} \mathbf{q}_{t,s}^{\phi_{t,s}} (1 - \mathbf{q}_{t,s})^{\mathbf{r}_{t,s}}$$
$$\pi(\mathbf{r}_{t,s} > \mathbf{0}|\gamma_{t,s}, \phi_{t,s}, \mu_{t,s}) = (1 - \gamma_{t,s}) \times \cdots$$
$$\cdots \begin{pmatrix} \mathbf{r}_{t,s} + \phi_{t,s} - 1 \\ \mathbf{r}_{t,s} \end{pmatrix} \mathbf{q}_{t,s}^{\phi_{t,s}} (1 - \mathbf{q}_{t,s})^{\mathbf{r}_{t,s}}$$
(1)

where $q_{t,s} = \phi_{t,s}/(\mu_{t,s} + \phi_{t,s})$.

Hotel reservation data Dynamic programming model

Choice Probability of hotel 0

 Customers make static discrete choices about which hotel to book at, with the choice probability to reserve at hotel
 0 given by

$$P_{s}(p_{t}, \rho_{t}) = \frac{1}{1 + \exp\{\alpha_{s} + \beta_{s}(\sigma_{s}p_{t} - \sigma_{s}\rho_{t})\}}$$
(2)

where p_t is BAR price of hotel 0 at t,

 ρ_t is the average of competing hotels' BAR at t,

- $\alpha_{\textit{s}}$ and $\beta_{\textit{s}}$ are the choice probability parameters,
- σ_s is an average discount rate for each type of consumer.

Hotel reservation data Dynamic programming model

Demand for hotel 0

• Conditional on r_{t,s}, the demand for hotel 0, is

$$\tilde{a}_{t,s} \sim bin(r_{t,s}, P_s(p_t, \rho_t))$$

$$a_{t,s} = r_{t,s} \cdot P(p_t, \rho_t | \alpha_s, \beta_s) = \frac{r_{t,s}}{1 + \exp[\alpha_s - \beta_s(\sigma_s p_t - \sigma_s \rho_t)]}$$
(3)

• The unconditional demand for hotel 0 is

$$f_{t}(a_{t}|p_{t},\rho_{t}) = \sum_{s \in S} \sum_{r \geq a} {r_{t,s} \choose a_{t,s}} P(p_{t},\rho_{t}|\alpha_{s},\beta_{s})^{a} \times \cdots$$

$$\cdots [1 - P(p_{t},\rho_{t}|\alpha_{s},\beta_{s})]^{(r-a)} \pi(r_{t,s}|\phi_{t,s},\mu_{t,s})$$
(4)

Hotel reservation data Dynamic programming model

Random Cancellation

• Deterministic probability of cancellation

- Exogenous variables
- Effect by p_t and p_t
- The total number of cancellations *t*-day prior to occupancy, c_t , follows distribution $\mathbf{c_t} \sim \mathbf{e_t}(\mathbf{c}|\mathbf{n_t})$
- The potential cancellation dist. $\tilde{c}_t \sim e_t(c|n_t, \bar{p}_t, p_t, \rho_t)$
 - Strategic cancellation
 - Weak evidence
 - A high computational burden

Hotel reservation data Dynamic programming model

Enforcing capacity constraint

We assume Hotel 0 do not overbook, and thus *ration* demand so that n_t ≤ n
 with probability 1 for all t ≥ 0. Mapping η implement this rationing. Number of new reservations (n_{1t},..., n_{St}) is given by

$$(n_{1t}, ..., n_{St}) = \eta(n_{1t}^d, ..., n_{St}^d, c_t, n_t, \overline{n})$$
(5)

• Law of motion for *n_t* is

$$n_{t-1} = n_t - c_t + \sum_s n_{st} \tag{6}$$

By construction $n_{t-1} \leq \overline{n}$ with probablity 1

Hotel reservation data Dynamic programming model

Law of motion

ADR p
_t

$$\overline{p}_{t-1} = \frac{(n_t - c_t)\overline{p}_t + \sum_s n_{st}\delta_s p_t}{n_{t-1}}$$
$$\equiv \lambda(n_t, n_{1t}, \dots, n_{St}, \overline{p}_t, p_t)$$
(7)

Competitors' price ρ_t

$$\rho_{t-1} \sim h(\rho|\rho_t)$$
(8)

DP model

Dynamic programming model

- Let V_t(n, p
 ρ, ρ) be the maximal expected revenue Hotel 0 expects t days prior to occupancy, if its current occupancy is n, the average price (ADR) of these n reservations is p
 and the average BAR of its competitors is ρ_t.
- On t = -1 (day after arrival) there are no further decisions and hotel's realized profit for that day can be calculated:

$$V_{-1}(n,\overline{p},\rho) = \min[\overline{n},n](\overline{p}-\omega)$$

where \overline{n} is the hotel's capacity and ω is the marginal cost of servicing a room.

Hotel reservation data Dynamic programming model

Bellman equation

At the start of each day t = 0, 1, ..., T prior to arrival, the hotel observes (n_t, p
_t, ρ_t) and sets its (BAR) p_t to maximize profit

• For
$$t = -1$$
, $V_{-1}(n, \overline{p}, \rho) = n \cdot (\overline{p} - \omega)$

$$V_{t}(n, \overline{p}, \rho) =$$

$$\max_{p} \int_{\rho'} \sum_{n_{1}^{d}} \dots \sum_{n_{S}^{d}} \sum_{c} V_{t-1}(n', \overline{p}', \rho')$$

$$\cdot e_{t}(c|n, \overline{p}, p, \rho) \cdot f_{1t}(n_{1}^{d}|p, \rho) \dots \cdot f_{St}(n_{S}^{d}|p, \rho) \cdot h_{t}(\rho'|\rho).(9)$$

Hotel reservation data Dynamic programming model

Property of DP

• Theorem 1 For each *t* ∈ {1,...,*T*} the value function *V*_{*t*} has the representation

$$V_t(n,\overline{p},\rho) = V_t^f(n,\overline{p},\rho) + V_t^b(n,\overline{p},\rho)$$
(10)

where V_t^f is the "forward looking component" that equals the expected profits from rooms that are not yet booked, whereas V_t^b is the "backward looking component" that equals expected profits from rooms that are already booked.

Hotel reservation data Dynamic programming model

Property of DP

- Assumption 1 The conditional probability distributions for the number of new transient and group reservation requests, r^d_t and g^d_t are independent of the hotel's ADR p.
- Assumption 2 (Exogenous cancellations) The conditional probability distributions for the number of cancellations, c_t, by existing customers does not depend on the hotel 0's BAR p or ADR p.
- Assumption 2 holds if the conditional probability density e_t(c|n, p, ρ, p̄) in the Bellman equation (9) does not depend on (p, p̄). We do not have strong evidence that cancellation decisions depend on hotel 0's BAR and ADR.

Hotel reservation data Dynamic programming model

Property of DP

- Theorem 2 If Assumption 1 and 2 hold, then for each t ∈ {1,..., T} the forward looking component of the value function V^f_t is independent of p
 , i.e. it can be written as V^f_t(n, ρ) and depends on (n, ρ) but not p
 .
- Theorem 3 If Assumptions 1 and 2 hold then for each t ∈ {1,..., T} the optimal decision rule for BAR p_t^{*} is independent of p
 , i.e. it can be written as p_t^{*}(n, ρ) and depends on (n, ρ) but not p.

Solution to a simple example at t = 0

- Suppose hotel 0 knows that on day t = 0 that $k_0 = 50$ customers will be arriving in this market and deciding where to stay.
- Thus, *r*₀ ~ bin(50, P₀(p, ρ)) is the probability distribution for demand for Hotel 0.
- Expected demand is D₀(p, ρ) = 50 * P₀(p, ρ), but the hotel must enforce overbooking constraint r̃₀ ≤ n̄ − n (remaining unsold rooms) with probability 1.
- Hotel's problem is

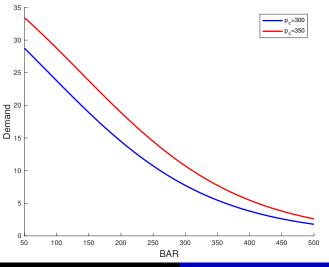
$$V_0^f(n,\rho) = \max_{p} E\left\{\min[\tilde{r}_0(p,\rho), \overline{n} - n](p-\omega)\right\}$$

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Estimation results

Hotel reservation data Dynamic programming model

Expected demand at t = 0, $\rho = 300$ and $\rho = 350$



Cho, Lee, Rust and Yu (2018) Chung-Ang

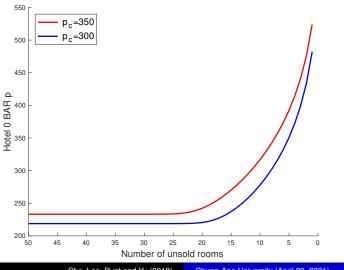
Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management

Dynamic Hotel Pricing

Hotel reservation data Dynamic programming model

Optimal prices at t = 0, $\rho = 300$ and $\rho = 350$



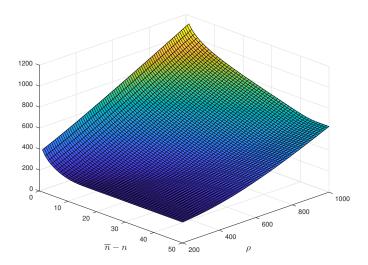
27/65

Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Hotel reservation data Dynamic programming model

Optimal BAR t = 0



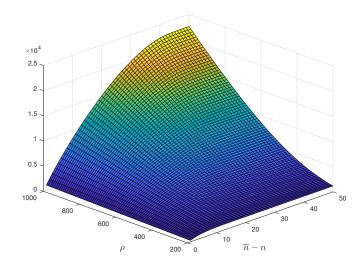
Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Estimation results

Hotel reservation data Dynamic programming model

Optimal profit $V_0(\overline{n, \overline{p}, \rho})$



Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

How we estimated the model

MSM (Method of Simulated Moments)

- Set up the parameters (Including Initial Guess)
- Ind the optimal prices and value function by solving DP
- Generate simulation data
- Find the distance between simulation data and actual data
- Update the parameters which enable the distance shorter Repeat 2-5 until convergence

List of moments

Hotel	Description of Moment	Number of Moments
	avg. occupancy rate, by t	47
	distribution of occupancy on t=0	28
	avg. Transient reservations (Leisure+Business), by t	47
Hotel 0	variance of Transient reservations, by t	47
	prob. of no Group reservations, by t	47
	avg. Group reservations, by t	47
	prob. of non-zero cancellations, by t	47
	avg. cancellation rate, by t	46
	avg. BAR, by t	47
	avg. ADR on t=0	1
	distribution of ADR on t=0	28
All Hotels	avg. occupancy rate on t=0	1
	distribution of occupancy rate on t=0	48
Total		481

Table 8: List of Moments

Estimate of elasticity

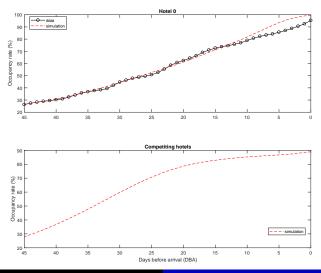
	Segment	Parameter	Lowest Demand (0-25%)	Medium-Low Demand (25-50%)	Medium-high Demand (50-75%)	Highest Demand (75-100%)
Weekday	Leisure	a_{τ} b_{τ}	-1.698 (0.384) -0.008 (0.001)	-1.546 (0.338) -0.007 (0.001)	-1.329 (0.174) -0.010 (0.001)	-2.300 (2.798) -0.074 (0.036)
	Business	a_{τ} b_{τ}	-1.618 (1.151) -0.006 (0.002)	-1.904 (0.150) -5.8E-3 (2.7E-4)	-1.047 (0.134) -0.006 (0.001)	-2.564 (0.742) -0.091 (0.091)
	Group	$a_{ au} \\ b_{ au}$	-0.539 (1.115) -0.012 (0.005)	-0.935 (0.152) -0.011 (0.002)	-1.167 (0.360) -0.012 (0.002)	-1.370 (1.362) -0.094(0.055)
Weekend	Leisure	$a_{ au} \\ b_{ au}$	-1.580 (0.091) -0.008 (0.001)	-1.803 (0.328) -0.009 (0.002)	-0.296 (0.515) -0.035 (0.046)	-3.821 (15.325) -0.128 (0.980)
	Business	$egin{array}{c} a_{ au} \ b_{ au} \end{array}$	-1.358 (0.149) -0.007 (0.001)	-1.262 (0.314) -0.007 (0.003)	-2.203 (2.480) -0.007 (0.010)	-3.874 (5.172) -0.076 (0.269)
	Group	$a_{ au} \\ b_{ au}$	-0.813 (0.076) -0.012 (0.003)	-0.913 (0.217) -0.017 (0.002)	-0.002 (0.003) -0.015 (0.010)	-2.537 (4.421) -0.134 (0.194)

Table 9: Estimates of Choice Parameters (a_{τ}, b_{τ})

Note: standard errors in parentheses.

Cho, Lee, Rust and Yu (2018) Chung-

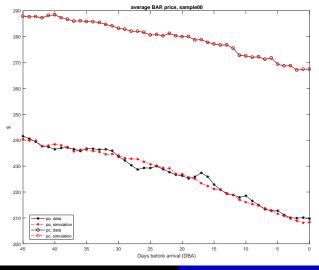
Fit of model: occupancy on busiest weekends



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

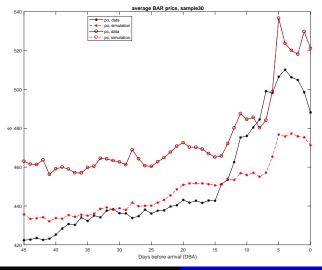
Fit of model: BAR on least busy weekdays



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

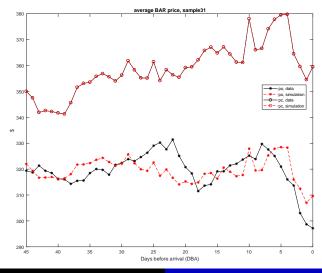
Fit of model: BAR on most busy weekdays



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Fit of model: BAR on busiest weekends

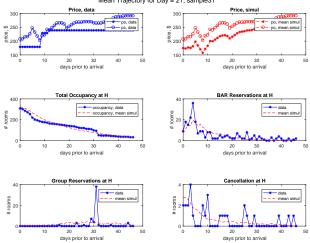


Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management Estimation results

Model vs data on specific busiest weekend Day21

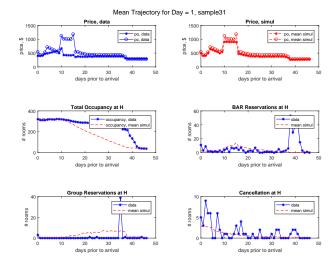


Mean Trajectory for Day = 21, sample31

Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

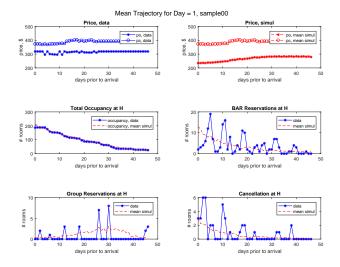
Model vs data on specific busiest weekend Day1



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Model vs data on specific least-busy weekday 1

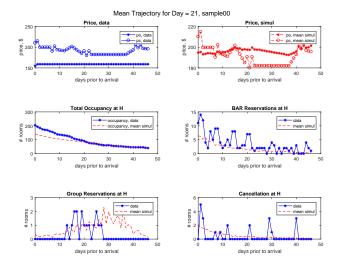


Chung-Ang University (April 29, 2021)

39/65

Cho, Lee, Rust and Yu (2018)

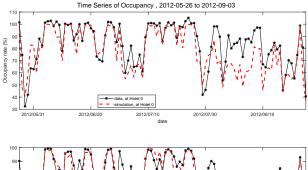
Model vs data on specific least-busy weekday 21

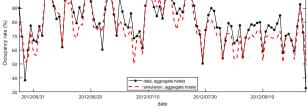


Chung-Ang University (April 29, 2021)

Cho, Lee, Rust and Yu (2018)

Actual vs predicted Occupancy: 5/26 - 9/3/2012 (final)

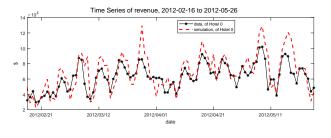


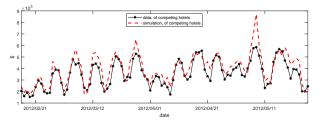


Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Actual vs predicted Revenues: 5/26 - 9/3/2012 (final)

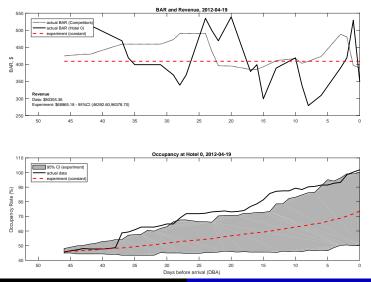




Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

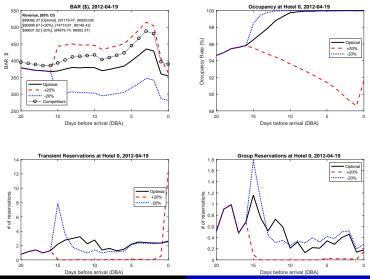
Counter-factual : Constant price (hotel 0), sample31



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

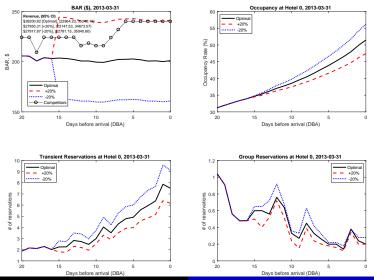
Counter-factual : optimal price±20%, sample31



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Counter-factual : optimal price±20%, sample00



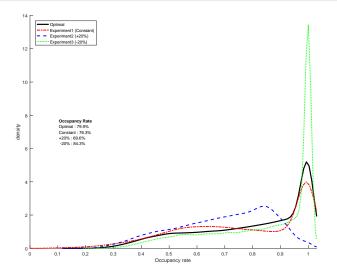
Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Dynamic Pricing and Revenue Management Dynamic Hotel Pricing

Estimation results

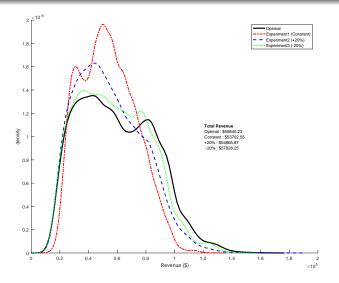
Counter-factual : occupancy distribution (full sample)



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Counter-factual : revenue distribution (full sample)



Cho, Lee, Rust and Yu (2018)

Chung-Ang University (April 29, 2021)

Conclusion

- Introduced a DP model for hotel pricing, which allows for competition, heterogeneous demand and intertemporal price discrimination
- Sensible estimation of demand
- Accurate prediction of reservation/price dynamics
- Future works
 - allow for full equilibrium
 - relax the assumption of optimality

Firms in the Local Luxury Hotel Market

Table 1: Hotels in the local market in our study

Property	Avg. BAR	Star	Class	Chained Brand	Rate	Capacity Share	Distance to mass transit	Cancel Policy
hotel 0	\$ 293.26	4	Luxury	No	4.4	15%	3 min	1 day before
hotel 1	\$ 338.29	4	Upper Up	Yes	4.2	19%	8 min	2 day before
hotel 2	\$ 253.51	4	Upper Up	No	4.2	9%	8 min	3 day before
hotel 3	\$ 285.16	4	Upper Up	No	4.4	12%	3 min	1 day before
hotel 4	\$ 454.30	5	Luxury	Yes	4.7	10%	10 min	1 day before
hotel 5	\$ 397.09	4	Luxury	No	4.6	19%	10 min	Strict
hotel 6	\$ 282.64	4.5	Upper Up	No	4.4	16%	5 min	3 day before

List of Data Sets

Table 2: Data description

Data	The first day of occupancy	The last day of occupancy	Observations	Description
market vision	2010-09-21	2014-08-13	609,181	competitors' price
reservation raw 1	2009-09-01	2013-10-31	201,176	reservations detail information
cancellation raw 2	2009-09-01	2013-10-31	29,241	cancel detail information
daily pick-up report	2010-09-16	2014-05-21	475,187	daily revenue report
STR market data	2010-01-01	2014-12-31	1,731	competitors' occupancy
Data range	2010-10-01	2013-10-31		37 months

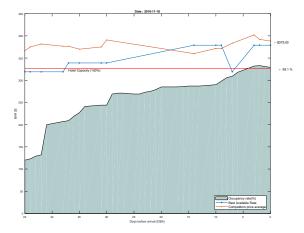
Customer share by type

Sample	Customer share		Occupancy	Sample	Customer share			Occupancy	
(Weekday)	business	leisure	group	rate	(Weekend)	business	leisure	group	rate
00	0.18	0.61	0.21	51.6 %	01	0.12	0.67	0.21	58.7 %
10	0.20	0.51	0.29	73.9 %	11	0.13	0.65	0.22	81.5 %
20	0.25	0.39	0.36	88.5 %	21	0.14	0.60	0.26	91.0 %
30	0.26	0.30	0.44	99.2 %	31	0.15	0.56	0.30	95.3 %

Table 7: Customer distribution by subsample

back

Example Arrival Date: Busy Weekend 11/18/2010



Dynamic Pricing and Revenue Management Estimation results

Multiple Products: Room Types

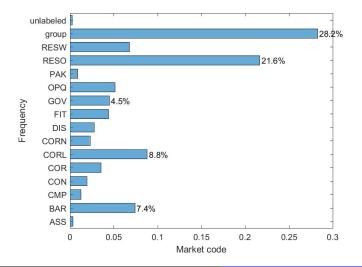
		Table 3: Room Type	28	
Code	Description	% of rooms (before renovation)	% of rooms (after renovation)	Rack Rate
B1K	Superior, 1 King	57	43	\$203.15
B2D	Superior, 2 double beds	33	19	\$ 203.15
A1K	Deluxe, 1 King	4	14	\$ 253.15
A2D	Deluxe, 2 double beds	1	14	\$ 253.15
GD1K	Grand Deluxe, 1 King	0	3	\$ 303.15
GD2D	Grand Deluxe, 2 double beds	0	1.5	\$ 303.15
others	Suites, etc	5	5.5	>\$600 or negotiated

Multiple Segments: Reservation/Contract Types

Category	Market Segment	Title	Description	Booking Share
	BAR	Best Available Rate	Best available rates that have hotel house cancellation policy, rate codes BAR only applicable in this segment	
	CON	Consortia/TMC	Consortia, Travel Management Companies bookings	
	RESW	Restricted-Web	Advance purchase and/or any promotional offers available in Hotel 0 collection web site with restrictions such as pre-paid/non-refundable i.e. 10% off 7 day advance purchase, 2mlos at 20% off, or limited time offer	68.4%
Transient	CORL	Corporate LRA	Corporate/local negotiated rates with last room availability	68.4%
	CORN	Corporate NLRA	Corporate/local negotiated rates with Non-last room availability	
	GOV	Government	Federal or state government per diem and/or accounts with per diem equivalent rates	
	PAK	Package	Room package	
	FIT	Wholesale	Locally negotiated wholesale accounts and Third party vacation package	
	DIS	Qualified Discount	AAA, AARP, Employee rate or any qualified discounted rates	
	RESO	Restricted-OTAs	Same rates as restricted segment available in OTA merchant sites	
	OPQ	Opaque	Hotwire/ Priceline	
	CGP	Corporate	corporate group	
Group	CGV	Government	government group	
	ASS	Association	convention group	31.6%
	TOT	Tour & Travel	tour group	
	group	group	uncategorized group	

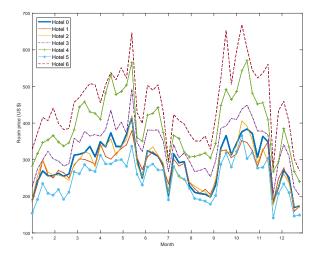
Table 4: Hotel Reservation type

Reservation Frequencies



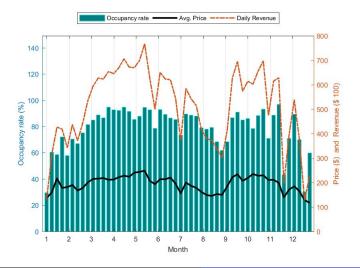
Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Anual Cycle: BAR



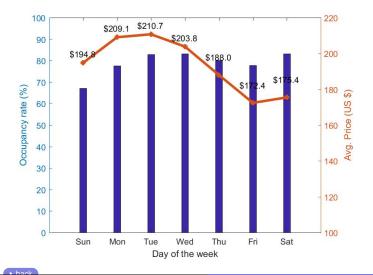
Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Anual Cycle: Occ, Avg Daily Rate (ADR) and Rev



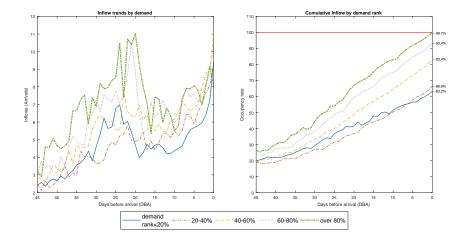
Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Weekly Cycles: Occ and ADR

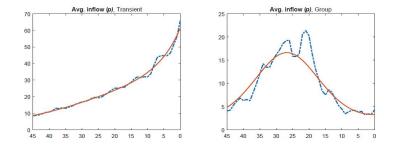


Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Reservation Dynamics: by Type of Day

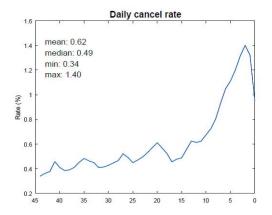


Reservation Dynamics: by Segment

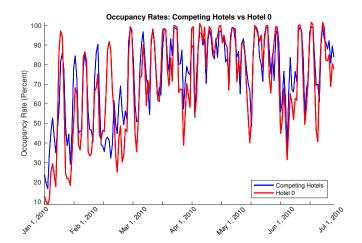


back

Cancellation Dynamics

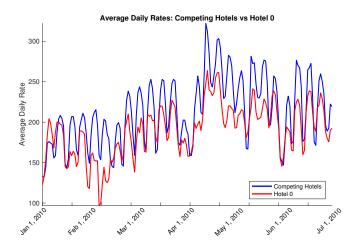


Co-movement in Occupancy Rate



Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Co-movement in ADR



Cho, Lee, Rust and Yu (2018) Chung-Ang University (April 29, 2021)

Regression of ADR₀

Variable	Estimate	Standard Error			
constant	143.7	3.1			
OCC ₀	0.68	0.04			
$N = 1277, R^2 = 0.17$					

Variable	Estimate	Standard Error		
constant	30.07	2.19		
ADR_c	0.76	0.011		
OCC ₀	-0.013	0.021		
$N = 1277, R^2 = 0.82$				
(adding monthly and daily dummies raises R^2 to 0.86)				

Downward-sloping Demand?

