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Abstract

This paper o¤ers a model to study competition and corruption with a

principal-agent framework. We provide two key results on the optimal insti-

tutional design. First, in quality-only competition, corruption does no harm to

the principal, but in quality-price competition, corruption negatively a¤ects the

principal. Second, with no corruption, quality-price competition is a superior

institutional setting for the principal compared with quality-only competition

when the principal�s net bene�t is su¢ ciently large, whereas with corruption,

introducing price competition can lead to a worse outcome for the principal

given the high price distortion involved.
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1 Introduction

Corruption has a long history of intervening in various resource-allocation problems.1

It has been repeatedly argued that corruption can disrupt an e¢ cient allocation,2

and that, in particular, when the allocation problems involve price settlement, cor-

ruption can increase the costs of procuring goods and services.

Allocative ine¢ ciency and price distortion are emphasized and more evident in a

competitive environment: an agent chooses a �winner�from competing candidates.

Many applications in economic situations �t this description. In the public sector,

two suppliers may compete to sell a product to a government procurement o¢ cer;

in the private sector, two upstream �rms may compete to sell an output to a down-

stream �rm; and in labor markets, two candidates may compete to be hired by an

organization.

Following a pioneering work by Rose-Ackerman (1975), papers study corrup-

tion within a competitive environment and the link between corruption and market

structure (see Shleifer and Vishny (1993), Ades and Di Tella (1999), La¤ont and

N�Guessan (1999), Burguet and Che (2004) and Compte, Lambert-Mogiliansky and

Verdier (2005)). In all of these papers, the existence of a corruptible agent is an

essential element for their �ndings; however, no previous work examines the opti-

mal design problem for the agent. On the other hand, the three-tiered hierarchical

structure with principal/agent/�rm introduced by Tirole (1986) provides a seminal

modelling structure to study the role of an agent (for example, Khalil, Lawarrée and

Yun (2010)), but has not been extended to a competitive environment.3

1See Bardhan (1997) for prescriptions for deterring corruption in the fourth century B.C.

2The collection by Elliott (1997) and the book by Rose-Ackerman (1999) provide comprehensive

lists of references. Klitgaard (1988), Andvig (1991), Ades and Di Tella (1996), Bardhan (1997),

Lambsdor¤ (2001) and Aidt (2003) are also useful surveys.

3There is a large literature on agent problem or delegation (see Mookherjee (2006) for survey),

and each paper assumes an environment in which either a standard mechanism approach by a

principal cannot be used to elicit information of an agent or the principal prefers delegation to

1



This paper o¤ers a model to study competition and corruption with a principal-

agent framework in order to tackle problems of allocative ine¢ ciency and price

distortion. The principal-agent framework embodies two layers of an optimal-design

problem: an optimal compensation scheme for the agent and an optimal institutional

setting. Our aim is to provide the relationship between corruption and market

structure for which we consider four di¤erent institutional settings depending on

the presence of corruption, and on whether the competition is based on quality

alone or both quality and price. First, given each institutional setting, we �nd an

optimal compensation scheme for the agent, and later, compare the four institutional

settings to �nd an optimal institutional choice.4

The model assumes that a �rm�s population consists of both high- and low-

quality �rms, from which two �rms are randomly matched with the principal. The

principal either might not have the expertise needed to assess each �rm�s quality or

might have the expertise but work in a position managing many identical agents.5

The principal knows that a high-quality �rm�s product has a higher probability

of succeeding at a certain task. Hence, the compensation scheme is structured to

depend on whether the task is successful or not. Additionally, if an institutional

setting involves price competition, the principal can observe the purchase price;

therefore, a cost sharing based on the price is a part of the scheme.

For each institutional setting, we characterize the optimal compensation scheme.

If the competition is based on quality and price, a cost-sharing rule between the

principal and the agent plays an important role in achieving the optimality with

corruption.6 On the other hand, if the competition is based on quality alone, a

centralization through mechanism design. Otherwise, no agent�s decision making can survive; the

principal can directly make the agent reveal information.

4Of course, often a principal or a government body may not be able to choose the presence of

corruption. We may treat it as an exogenous variable.

5 In this regard, the principal can also be considered a social planner or designer.

6The is the reason that some values of the cost-sharing rule that satisfy the optimal solution for

quality-price competition without corruption in Proposition 1 do not satisfy the one for quality-price
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su¢ ciently high marginal incentive for the successful task result enables the principal

to obtain the optimal payo¤ regardless of the presence of corruption.

This paper provides two key results on the optimal institutional design. First,

we show that in quality-only competition, corruption does no harm to the princi-

pal, sharing a similar prediction with the �e¢ cient corruption�argument (see Lui

(1985) and Beck and Maher (1986), and also Aidt (2003) for a survey), whereas in

quality-price competition, corruption negatively a¤ects the principal. In the latter,

the objective of the principal is to buy a better-quality good at a lower price. How-

ever, corruption creates a money �ow between all three participants; that is, money

transfers �rst from the principal to a winning �rm, then the �rm and the agent

divide it. This inevitably involves an increase in the �buying price.�On the other

hand, in the former, since there is no price competition, the �prize�is �xed. Then,

the aim of the principal is to buy a better-quality good. In this case, corruption

creates a money �ow just between the agent and the �rm, which does not a¤ect the

principal as long as the high-quality �rm is picked.7

Second, with no corruption, quality-price competition is a superior institutional

setting for the principal compared with quality-only when the principal�s net ben-

e�t is su¢ ciently large, which con�rms the conventional market outcome: a more

competitive environment results in a more e¢ cient allocation. However, with cor-

ruption, introducing an additional dimension of competition, price competition, can

lead to a worse outcome for the principal given the high price distortion involved.

Hence, the conventional view does not hold where there is corruption.

Shleifer and Vishny (1993), Ades and Di Tella (1999) and La¤ont and N�Guessan

(1999) examine the relationship between corruption and competition with a market

structure, but they do not consider a competitive environment such as competi-

tive procurement. Burguet and Che (2004) and Compte, Lambert-Mogiliansky and

Verdier (2005) study corruption in a competitive environment, but neither incorpo-

competition with corruption in Proposition 5.

7Still, there is a distributive issue between the �rm and the agent.
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rates a principal-agent problem into it.8

This paper is organized as follows. The model is introduced in Section 2, and

quality-price competition without corruption and quality-price competition with cor-

ruption are analyzed in Sections 3 and 4, respectively. Quality-only competition is

discussed in Section 5, and, �nally, optimal institutional choice is studied in Section

6. Examples and discussion are in Section 7, Concluding remarks are in Section 8,

and all the proofs are collected in an appendix.

2 Model

Consider a situation in which two �rms are randomly matched from a population,

and they compete to supply a product to a principal. The two �rms may have two

di¤erent technology levels, which yield di¤erent product qualities, namely high and

low, q 2 fH;Lg. The proportion of �rms that can produce the high-quality product

is � 2 (0; 1), and in what follows, a �rm with the high- (resp. low-) quality product is

denoted by HP (resp. LP). Each �rm incurs a regular cost of producing its product,

which is normalized as 0. However, production of the high-quality product requires

a �quali�ed worker,�whose wage is exogenously given as c.9

Each �rm knows the other matched �rm�s technology level and the worker�s

market wage c, but the principal knows only that the proportion of HP is �, and c

is drawn from an absolutely continuous distribution function F , where its support

is given as [0; c] satisfying c > 0. In other words, for the downstream competition

between the two �rms, we assume a complete information game to make the analysis

tractable.10

8 In the former, an agent takes a bribe from a �rm in return for manipulating the �rm�s quality

assessment to a buyer, and in the latter, an agent allows a �rm that wins bribe bidding to adjust

its initial price bid.

9One cannot classify HP as a more e¢ cient �rm since HP produces a higher quality product

with a higher cost.

10Note that in this paper, each �rm�s quality is assumed to be given, i.e., not bidding quality in
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Since the principal cannot verify the product quality at the moment of making

the purchase decision, he or she hires an expert in the industry, called an agent, to

delegate the decision to. The two �rms bid prices (pi; pj) and compete to be chosen

by the agent. If the product is of high quality, it succeeds at a certain task with

probability rH , and if the product is of low quality, it succeeds with probability rL

where 1 > rH > rL > 0. The principal gains a return vS if the task is successful,

and vF if not, with vS > vF � 0.

The principal can only observe the outcome of the task and the price level of

the product purchased by the agent, so the principal designs the agent�s optimal

compensation scheme based on the outcome and the purchase price with three vari-

ables (xS ; xF ; xp) 2 R3. The compensation scheme consists of two parts: incentives

(xS ; xF ) and cost sharing xp.11 If the product succeeds in the task, the agent�s

incentive for the outcome is xS , but if the product fails, it is xF . In addition, the

agent�s cost sharing is xpp, where p 2 R+ is the purchase price of the product.

We assume that:

(A1) the principal and the agent are risk-neutral.

(A2) xp 2 (0; x] where x � 1.

(A3) the agent�s reservation payo¤ is U � 0.

For (A2), we impose the limited liability xp � x, since, for instance, if xp > 1,

the principal can obtain a greater revenue from the agent than the purchase price p

given �p+ xpp > 0. Denote

xq � rqxS + (1� rq)xF for q 2 fH;Lg,

vq � rqvS + (1� rq)vF for q 2 fH;Lg,

x � (xH ; xL; xp) ,

order to make the model widely applicable to competitive environments other than procurement

auctions (e.g., job candidates are not able to choose their qualities), so for incomplete information,

the downstream competition has the two-dimensional private information (quality and cost).

11 If the cost sharing depends on the outcomes, success or failure, as well, there does not exist a

solution. See Appendix II for the analysis.
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where x 2 
 � R2 � (0; x]. For each q 2 fH;Lg, xq can be interpreted as the

expected incentive for quality q, and vq as the expected return for quality q.

3 Competition without corruption

We �rst consider the case without corruption as a benchmark. The principal an-

nounces the compensation scheme, and two matched �rms bid prices to sell their

product. The formal timeline is as follows:

Time 1. Nature determines c.

Time 2. The principal announces the compensation scheme.

Time 3. The two �rms are randomly matched, and bid prices.

Time 4. The agent chooses one of them.

The principal makes the move �rst in this model similar to a �screening� ap-

proach, which can be applied to situations where the principal has to manage many

identical agents.

The two �rms play a simultaneous move game with complete information at

time 3. Each �rm i�s strategy is a bid distribution �i over R+ where pi is a bid,

and after observing their bids and quality levels, the agent chooses one �rm, so the

agent�s strategy is a mapping from R2+�fH;Lg2 to �(fi; jg) where �(fi; jg) is the

set of probability distributions over the set fi; jg, and h (pi; pj ; qi; qj) denotes the

probability of choosing �rm i.

LP�s cost 0 can be considered its �type�, so a full type space including LP�s can

be constructed as [0; c] in which �rm i�s type is denoted by �i 2 [0; c]. Firm i�s payo¤

is its bid minus the production cost, pi� �i, if chosen, and 0 otherwise. The agent�s

payo¤ from choosing �rm i with quality qi and price-bid pi is given as the incentive

minus the cost sharing, xqi � xppi for qi 2 fH;Lg.

The agent�s sequentially rational strategy h� at time 4 is to choose �rm i with

probability 1 if choosing i yields a higher payo¤ to the agent, xqi�xppi > xqj�xppj ,
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and �rm i with probability 1
2 if it is indi¤erent, xqi � xppi = xqj � xppj .

12 It follows

from the agent�s optimal strategy that �rm i�s payo¤ � : R2+ � fH;Lg2 ! R+ is

given as below:

�(pi; pj ; qi; qj) =

8>>><>>>:
pi � �i if xqi � xppi > xqj � xppj ,

1
2 [pi � �i] if xqi � xppi = xqj � xppj ,

0 if xqi � xppi < xqj � xppj .

Then, a subgame perfect Nash equilibrium is the agent�s sequentially rational strat-

egy h� with a mixed strategy pro�le (��i ; �
�
j ) such that for each quality pro�le

(qi; qj) 2 fH;Lg2, and for every �rm i,

u(��i ; �
�
j ; qi; qj) � u(�i; ��j ; qi; qj) for all �i, and u(��i ; ��j ; qi; qj) � 0,

where u(�i; �j ; qi; qj) � E�[�(pi; pj ; qi; qj)] and � � (�i; �j) is a mixed strategy

pro�le. In what follows, an equilibrium refers to a subgame perfect Nash equilibrium.

Note that the most aggressive bid of LP and HP is 0 and c, respectively. There can

be three possible matchings given di¤erent quality pro�les (qi; qj) 2 fH;Lg2:

M1. Two low-quality �rms are matched with probability (1� �)2.

In this case, the agent�s payo¤ is xL � xppi for all i. Since the two low-quality

�rms engage in a Bertrand-like competition, a unique equilibrium bid is to choose 0

with probability 1.

M2. Two high-quality �rms are matched with probability �2.

12For Bertrand competition with homogenous products and di¤erent marginal costs, in order to

resolve the existence problem, it is sometimes �assumed�that the market favors the low-cost �rm

such that it can charge a price equal to the high-cost �rm�s marginal cost. Blume (2003) �rst shows

that this non-standard assumption is not necessary, and the conventional outcome holds under the

standard rule that both �rms split the market when their prices tie. Similarly, in this model, for

xqi�xppi = xqj �xppj , this assumption is not necessary, and the proof works for any strictly mixed

strategy h (pi; pj ; qi; qj) 2 (0; 1), but it is clear that choosing each with an equal probability is most

reasonable. Furthermore, depending on the parameter c, HP can be a �rm like the low-cost �rm or

LP can be a �rm like the low-cost �rm, so the assumption favoring the low-cost �rm simply does

not work in this model.
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In this case, the agent�s payo¤ is xH � xppi for all i. Since the two high-quality

�rms engage in the competition, a unique equilibrium bid is to choose c with prob-

ability 1.

M3. Two di¤erent-quality �rms are matched with probability 2� (1� �).

When two di¤erent-quality �rms are matched, with slight abuse of the notations,

we use (pH ; pL) instead of (pi; pj). In this case, the agent compares the payo¤ from

choosing HP, xH � xppH , with the payo¤ from choosing LP, xL � xppL, to choose a

�rm. The agent�s net incentive is denoted by �x � xH � xL and the net incentive

per cost sharing is y such that

y � �x

xp
. (1)

For xH � xpc = xL or c = y, it is straightforward to �nd that a unique equilibrium

bid pro�le is (p�H ; p
�
L) = (c; 0).

13 However, for c 6= y, there is no pure strategy Nash

equilibrium, and the existence of an equilibrium relies on a mixed strategy pro�le

as in the typical Bertrand competition with homogenous products and di¤erent

marginal costs (see Blume (2003) and Kartik (2011)). If xH � xpc > xL or c < y,

then there is HP�s bid that can beat LP�s most aggressive bid 0, so HP becomes a

winning �rm similar to the �low-cost �rm�in the Bertrand competition, whereas if

xH � xpc < xL or c > y, there is LP�s bid that can beat HP�s most aggressive bid

c, so LP becomes a winning �rm. By restricting solutions to weakly undominated

strategies, we can have a unique equilibrium outcome similar to the one in Kartik

(2011).

Lemma 1 Suppose that two di¤erent-quality �rms are matched. Then, for any

equilibrium in weakly undominated strategies satisfying the reservation payo¤ U , if

c < y, HP bids y and wins with probability 1, and if c > y, LP bids c� y and wins

with probability 1.

In equilibrium, if HP�s cost c is lower than y, then there exists pH > c such that

xH � xppH = xL, which makes HP win with probability 1 while LP randomizing

13This event can realize with measure zero probability.
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its bid, but if HP�s cost c is greater than y, then there exists pL > 0 such that

xH�xpc = xL�xppL, which makes LP win with probability 1 while HP randomizing

its bid.

The principal�s expected payo¤ is E[vH�c], where c is the price the principal pays

to one of the HPs, when the two high-quality �rms are matched with probability �2;

and the principal�s payo¤ is vL, where 0 is the price the principal pays to one of the

LPs, when the two low-quality �rms are matched with probability (1� �)2. Last,

the two di¤erent-quality �rms are matched with probability 2� (1� �), and for each

q 2 fH;Lg, if c < y (resp. c > y), HP (resp. LP) wins, which makes the principal

pay y (resp. c� y) to the �rm. Then, the principal�s (gross) payo¤ is given as

�(x) � �2(vH�Ec)+(1� �)2 vL+2�(1��)
�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)

�
,

(2)

and, similarly, the agent�s incentive payo¤ is

� (x) � �2(xH�xpEc)+(1� �)2 xL+2�(1��)
�Z y

0
xLdF (c) +

Z c

y
[xH � xpc]dF (c)

�
,

(3)

and the third term is derived from
R y
0 [xH � xpy]dF (c) +

R c
y [xL � xp(c� y)]dF (c).

The principal�s net payo¤ is the di¤erence between the principal�s payo¤ and

the agent�s incentive payo¤. Then, the principal solves the following maximization

problem: 8<: maxx2
[� (x)� � (x)]

s.t. � (x) � U (IR)
(P1)

Proposition 1 characterizes the set of solutions to the maximization problem.14

Proposition 1 x� solves (P1) if and only if x�p and �x
� satisfy y� = �x�=x�p where

y� 2 argmaxy2[0;c]
�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)

�
. (4)

14 In addition, one can show that if vH � vL 2 (0; c), then a solution must be an interior solution

with y� 2 (0; c).
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For any solution to (P1), the individual rationality condition (IR) must be bind-

ing � (x) = U , so it is su¢ cient to �nd x maximizing �(x) given the constraint,

which is equivalent to a solution in (4). A solution to (P1) is called the �rst-best

solution, and we next introduce corruption to examine how the agent�s payo¤ can

change with bribery.

4 Competition with corruption

Now, two �rms bid bribes as well as prices at time 3. We assume that �rms bid

prices without observing each other�s bribe bids.15 Then, the same analysis applies

for both cases: the simultaneous bidding of prices and bribes and the sequential

bidding of prices and bribes.

The agent�s expected payo¤ from receiving a bribe is given as w : R+ ! R in

order to capture the costs the agent may su¤er from corruption.16 We assume that

w (0) = 0, for all b � 0, w0 > 0 and w00 < 0 and that if a bribe is su¢ ciently large,

the marginal expected payo¤ is close to 0, that is, limb!+1w0 (b) = 0.

Each �rm i�s strategy is a bid distribution �bi over R2+, where pi is a price bid

and bi is a bribe bid. After observing their bids and quality levels, the agent chooses

one �rm, so the agent�s strategy is a mapping from R4+ � fH;Lg2 to �(fi; jg), and

hb (pi; pj ; bi; bj ; qi; qj) denotes the probability of choosing �rm i.

Firm i�s payo¤ is its price bid minus the sum of its bribe bid and the production

cost, pi� bi� �i for �i 2 [0; c], if chosen, and the agent�s payo¤ from choosing �rm i

with quality qi 2 fH;Lg and bid (pi; bi) is the incentive minus the cost sharing with

the expected payo¤ from receiving a bribe, denoted by

Uqi (x; pi; bi) � xqi � xppi + w (bi) . (5)

Then, the agent�s sequentially rational strategy hb� at time 4 is to choose �rm i

with probability 1 if choosing i yields a higher payo¤ to the agent, Uqi (x; pi; bi) >

15This secrecy is widely accepted as a feature of corruption (see Shleifer and Vishny (1993)).

16This cost can be the psychological burden of corruption (see Tirole (1992)).
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Uqj (x; pj ; bj), and �rm i with probability
1
2 if it is indi¤erent, Uqi (x; pi; bi) = Uqj (x; pj ; bj).

It follows from the agent�s optimal strategy that �rm i�s payo¤ �b : R4+�fH;Lg2 !

R+ is given as follows:

�b(pi; pj ; bi; bj ; qi; qj) =

8>>><>>>:
pi � bi � �i if Uqi (x; pi; bi) > Uqj (x; pj ; bj) ,

1
2 [pi � bi � �i] if Uqi (x; pi; bi) = Uqj (x; pj ; bj) ,

0 if Uqi (x; pi; bi) < Uqj (x; pj ; bj) .

Then, an equilibrium is the agent�s sequentially rational strategy hb� with a mixed

strategy pro�le (�b�i ; �
b�
j ) such that for each quality pro�le (qi; qj) 2 fH;Lg2, and

for every �rm i,

ub(�b�i ; �
b�
j ; qi; qj) � ub(�bi ; �b�j ; qi; qj) for all �bi , and ub(�b�i ; �b�j ; qi; qj) � 0,

where ub(�bi ; �
b
j ; qi; qj) � E�b [�b(pi; pj ; bi; bj ; qi; qj)] and �b � (�bi ; �

b
j) is a mixed

strategy pro�le. The bid of �rm i with quality qi that maximizes the agent�s payo¤

is to solve

max(pi;bi)2R2+ Uqi (x; pi; bi) s.t. pi � bi � �i � 0. (6)

Denote by its solution (p�i ; b
�
i ) and value function U

�
qi (x; �i). It is clear that for each

solution, the constraint is binding, that is, pi = bi + �i, from which the above can

be rewritten as

maxbi�0 Uqi (x; bi + �i; bi) = xqi � xp (bi + �i) + w (bi) . (7)

Then, if the cost sharing satis�es xp � w0 (0), the agent�s payo¤ maximizing bribe

solution is b�i = 0, and if the cost sharing is given as xp < w0 (0), there exists a

unique interior solution b�i > 0 satisfying �xp + w0 (b�i ) = 0, which is denoted bybb (xp), so
bb (xp) =

8<: 0 if xp � w0 (0) ,

w0�1 (xp) if xp < w
0 (0) .

(8)

Hence, the agent�s payo¤ maximizing bid is

(p�i (xp; �i) ; b
�
i (xp)) = (

bb (xp) + �i;bb (xp)). (9)
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As in the benchmark, there can be three possible matchings for (qi; qj) 2 fH;Lg2:

M1. In this case, the agent�s payo¤ is xL � xppi + w (bi) for all i. Since the two

low-quality �rms engage in a Bertrand-like competition, a unique equilibrium bid is

to choose the agent�s payo¤ maximizing bid with �i = 0 such as (p�i (xp; 0) ; b
�
i (xp))

with probability 1.

M2. In this case, the agent�s payo¤ is xH � xppi + w (bi � c) for all i. Since

the two high-quality �rms engage in the competition, a unique equilibrium bid is

to choose the agent�s payo¤ maximizing bid with �i = c such as (p�i (xp; c) ; b
�
i (xp))

with probability 1.

M3. For the above two cases, each �rm will also bid a bribe as well as a price in

order to beat the other, identical-quality �rm, but when two di¤erent-quality �rms

are matched, it is not clear whether paying a bribe is always an optimal decision.

First, we assume the situation in which both �rms bid bribes as well for the analysis

below, and later we show that it is indeed optimal for either quality �rm to pay a

bribe.

When two di¤erent-quality �rms are matched, in addition to the notations

(pH ; pL), we use (bH ; bL) instead of (bi; bj). In this case, the agent compares the pay-

o¤ from choosing HP UH (x; pH ; bH) with the payo¤ from choosing LP UL (x; pL; bL)

to choose a �rm. The most aggressive bid of �rm q 2 fH;Lg is to choose (p�q (xp; �i) ; b�q (xp))

given �q 2 [0; c]. It is routine to verify that for c 2 [0; c] satisfying U�H (x; c) =

U�L (x; 0), where U
�
H (x; c) and U

�
L (x; 0) are the value functions given H and L, a

unique equilibrium bid pro�le is ((p�q (xp; c) ; b
�
q (xp)))q2fH;Lg. However, for c 2 [0; c]

satisfying U�H (x; c) 6= U�L (x; 0), there is no pure strategy Nash equilibrium, and the

existence of an equilibrium relies on a mixed strategy pro�le. Denote

AH (x) � fc 2 [0; c] : U�H (x; c) > U�L (x; 0)g; AL (x) � fc 2 [0; c] : U�H (x; c) < U�L (x; 0)g.

If c 2 AH (x), then there is HP�s bid that can make the agent�s payo¤ higher

than LP�s maximum payo¤ U�L (x; 0), so HP becomes a winning �rm, whereas if

c 2 AL (x), then there is LP�s bid that can make the agent�s payo¤ higher than HP�s

maximum payo¤ U�H (x; c), so LP becomes a winning �rm. In addition, from the
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agent�s payo¤ maximizing bid in (9), U�H (x; c) > U�L (x; 0) is equivalent to c < y,

and U�H (x; c) < U
�
L (x; 0) is equivalent to c > y. The formal statement is presented

as follows.

Proposition 2 Suppose that two di¤erent-quality �rms are matched to bid prices

and bribes. Then, for any equilibrium in weakly undominated strategies satisfying the

reservation payo¤ U , if c < y, HP bids pH (x) = y+bb (xp) and wins with probability
1, and if c > y, LP bids pL (x) = c� y +bb (xp) and wins with probability 1.

In equilibrium, if HP�s cost c is su¢ ciently low, then there is HP�s bid such

that UH (x; pH ; bH) = U�L (x; 0), which makes HP a winning �rm with probability 1,

but if HP�s cost c is su¢ ciently high, then there is LP�s bid such that U�H (x; c) =

UL (x; pL; bL), which makes LP a winning �rm with probability 1.

Proposition 2�s result was derived provided that both quality �rms always bid

bribes even if the option of not paying a bribe is available to them. The following

Proposition, however, shows that if xp < w0 (0), paying a bribe is optimal for each

quality �rm, even when either one can win without paying a bribe. If xp � w0 (0), the

bribe must be 0 in the bid that maximizes the agent payo¤ in (7), so the competition

with bribe bidding simply reduces to the benchmark case without corruption.

Proposition 3 If xp � w0 (0), the analysis reduces to the competition without cor-

ruption, and if xp < w0 (0), each quality �rm optimally chooses to pay a bribe.

The results of Propositions 2 and 3 enable us to derive the principal and the

agent�s payo¤s with corruption, in which �(x) and � (x) are from the principal�s

payo¤ (2) and the agent�s payo¤ (3) in the previous section without corruption.

If the same-quality �rms are matched, compared with the benchmark case, the

equilibrium price bid increases by bb (xp) from (9). If two di¤erent-quality �rms are

matched, compared with the benchmark case, the equilibrium price bid increases

by bb (xp), regardless of which quality �rm wins such that pH (x) = y + bb (xp) and
pL (x) = c� y +bb (xp), respectively, which is provided in Propositions 2 and 3.

13



Proposition 4 With corruption, the principal�s payo¤ is given as �b (x) = � (x)�bb (xp), and the agent�s incentive payo¤ is �b (x) = � (x)� xpbb (xp).
The principal�s net payo¤ is the di¤erence between the principal�s payo¤ and

the agent�s incentive payo¤. Then, the principal solves the following maximization

problem: 8<: maxx2
[�
b (x)� �b (x)]

s.t. �b (x) � U (IR)
(P2)

Proposition 4 results in the solution of (P2). The optimal value of y = �x=xp is the

same for (P1) and (P2), but only speci�c values of xp solve (P2), whereas for each

xp 2 (0; x], there exists �x 2 R that solves (P1).

Proposition 5 x� solves (P2) if and only if x� satis�es y� from (4), and x�p =

argmin(0;x]bb (xp).
For any solution to (P2), (IR) must be binding �b (x) = U , as in (P1), but the

optimal cost-sharing rule plays an important role in (P2), whereas any cost-sharing

rule satisfying y� solves (P1). One can note that with corruption, each quality �rm�s

equilibrium bid increases by bb (xp), so the HP�s optimal winning probability with
bribery is the same as the HP�s optimal winning probability without bribery in

Proposition 1.

5 Quality-only competition

In this section, we consider the case in which there is no price competition. The

two matched �rms compete based on quality alone, and let p be a �xed �prize,�

and xp = 0. Since the �xed prize can be lower than a �rm�s production cost, in

particular, HP�s cost c, we allow each �rm to choose whether or not to participate

in the competition at time 3, instead of bidding prices in the timeline from section

3.17

17This problem does not arise with price competition in which each �rm can bid a price greater

than its production cost.
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Hence, a winning �rm obtains a price as the �xed amount, and the principal

always pays it to the winner. The principal�s expected payo¤ is vH for the two high-

quality �rms matched with probability �2, and the principal�s payo¤ is vL for the

two low-quality �rms matched with probability (1� �)2. When the two di¤erent-

quality �rms are matched with probability 2�(1��), the agent�s sequentially rational

strategy is to choose HP with probability 1 if choosing HP yields a higher payo¤ to

the agent, xH > xL, and HP with probability 1
2 if it is indi¤erent, xH = xL. Denote

by Pr(H) the probability that HP wins, which depends on (xH ; xL) and p. Note

that HP�s payo¤ must satisfy p � c � 0 to participate in the competition. Hence,

the principal�s payo¤ is given as

�q (xH ; xL; p) � �2vH + (1� �)2 vL + 2�(1� �)[Pr(H)vH + (1� Pr(H)) vL]� p,

and similarly, the agent�s incentive payo¤ is

�q (xH ; xL; p) � �2xH + (1� �)2 xL + 2�(1� �) [Pr(H)xH + (1� Pr(H))xL] .

Then, the principal solves the following maximization problem:8<: max(xH ;xL;p)2R2�R+ [�
q (xH ; xL; p)� �q (xH ; xL; p)]

s.t. �q (xH ; xL; p) � U (IR)
(P3)

Since for any solution, the (IR) condition must be binding, as in the previous sec-

tions, the above problem can be rewritten as

max(xH ;xL;p)2R2�R+ �
q (xH ; xL; p) s.t. �q (xH ; xL; p) = U .

It follows from vH > vL that for any �xed p, the principal chooses the incentives

(xH ; xL) such that HP wins if HP participates, so any solution must satisfy the

condition xH > xL. Hence, solving (P3) boils down to �nding an optimal p� that

maximizes 2�(1� �)[F (p) vH + (1� F (p)) vL]� p, and we state it in the following

lemma.

Lemma 2 (x�H ; x
�
L; p

�) solves (P3) if and only if x�H > x
�
L and p

� satis�es

p� 2 argmaxp2R+f2�(1� �)[F (p) vH + (1� F (p)) vL]� pg. (10)
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Now, we let �rms bid bribes for the competition. Firm i�s payo¤ is the prize

minus the sum of its bribe bid and the production cost, p � bi � �i for �i 2 [0; c],

if chosen, and the agent�s payo¤ from choosing �rm i with quality qi 2 fH;Lg and

bid bi is the incentive with the expected payo¤ from receiving a bribe, xqi + w (bi).

We can use a similar procedure to (6) for the optimal design problem. The bid of

�rm i with quality qi that maximizes the agent�s payo¤ is to solve

maxbi2R+ [xqi + w (bi)] s.t. p� bi � �i � 0. (11)

Then, HP�s bid maximizing the agent�s payo¤ is p � c, and LP�s bid maximizing

the agent�s payo¤ is p. As in the case without corruption, given vH > vL, for

any �xed p, the principal�s problem is to choose (xH ; xL) such that HP wins if HP

participates. Hence, the principal�s problem with corruption is to �nd an optimal

p that maximizes 2�(1 � �)[F (p) vH + (1� F (p)) vL] � p as above. However, with

bribery, we need to provide a stronger condition for (xH ; xL) to make HP win once

it participates. For each c < p�, (x�H ; x
�
L) must satisfy x

�
H+w (p

� � c) > x�L+w (p�).

This condition holds if and only if x�H + w (p
� � p�) � x�L + w (p

�), which can be

summarized as below.

Proposition 6 Suppose that �rms bid bribes for the competition. Then (x�H ; x
�
L; p

�)

solves (P3) with bribery if and only if x�H � x�L � w (p�) and p� satis�es (10).

The result establishes that when �rms compete on quality alone, regardless of

whether they also bid bribes, each solution must satisfy that HP wins given that it

participates, and the �xed prize is p� maximizing (10). However, without corruption,

any x�H > x�L yields a participating HP�s winning, whereas with corruption, the

condition changes to x�H � x�L � w (p�) since the principal must provide a higher

incentive to the agent with bribery.

6 Institutional choice

We provide the two key results on the institutional choice of this paper by comparing

the principal�s optimal payo¤s given di¤erent institutions. Denote the principal�s net
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payo¤�v � vH � vL, and de�ne

M (y;�v) �
�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)

�
= (�v � y)F (y) +

Z c

y
F (c) dc+ vL + y � c,

N (p;�v) � f2�(1� �)[F (p) vH + (1� F (p)) vL]� pg

= 2�(1� �)[�vF (p) + vL]� p.

In addition, denote by their maximumsM� (�v) � maxy2[0;c]M (y;�v) andN� (�v) �

maxp2R+ N (p;�v), respectively. Then, from the result of Proposition 1, if the prin-

cipal chooses competition based on quality and price without bribery, the maximum

payo¤ is

� (Q;P ) � �2(vH � Ec) + (1� �)2 vL + 2�(1� �)M� (�v)� U . (12)

Proposition 5 implies that if the principal chooses quality-price competition with

corruption, the maximum payo¤ is

� (Q;P jB) � �2(vH �Ec)+ (1� �)2 vL+2�(1��)M� (�v)�minxp2(0;x]bb (xp)�U .
(13)

Last, by Proposition 6, if the principal chooses quality-only competition, regardless

of the existence of corruption, the maximum payo¤ is

� (Q) = � (QjB) � �2vH + (1� �)2 vL +N� (�v)� U . (14)

The four cases can be summarized in the following table:

Quality Only Quality and Price

No Corruption � (Q) � (Q;P )

Corruption � (QjB) � (Q;P jB)

(15)

Given each row in the above table, corruption or no corruption, we can show which

institution is superior, and given each column, quality-only or quality-price compe-

tition, we can examine corruption�s e¤ect on the principal�s payo¤.
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The �rst main result of the institutional choice establishes the comparison be-

tween corruption and no corruption given each type of competition, and the result

immediately follows from (12)-(14).

Proposition 7 (i) � (Q) = � (QjB).

(ii) � (Q;P ) � � (Q;P jB) (= only if minxp2(0;x]bb (xp) = 0).
In quality-only competition, corruption does no harm to the principal, whereas

in quality-price competition, corruption negatively a¤ects the principal. In the lat-

ter, the objective of the principal is to buy a better-quality good at a lower price.

However, with corruption, the money �ow from the principal to the corrupt agent

through a winning �rm creates an increase in the �buying price.�On the other hand,

in the former, since there is no price competition, the �prize�is �xed, so corruption

does not a¤ect the principal as long as the high-quality �rm is picked.

With no corruption, the comparison between quality-price and quality-only com-

petition is based on values of �v given a �xed vL as follows:

� (Q;P )� � (Q) = ��2Ec+ 2�(1� �)M� (�v)�N� (�v) .

Now, we report that with no corruption, quality-price competition is a superior

institutional setting when �v is su¢ ciently large, but quality-only is a superior

institutional setting when �v is su¢ ciently small.

Proposition 8 For a su¢ ciently large �v > 0, p� = c and � (Q;P ) > � (Q), but

for a su¢ ciently small �v > 0, p� = 0 and � (Q;P ) < � (Q).

The second main result of the institutional choice follows from the existence of

�v which makes quality-price competition a superior institution with no corruption

in Proposition 7, and shows that the opposite case is possible given (13) and (14).

If quality-only is a superior institution with no corruption, then the result is trivial;

quality-only is a superior institution with corruption as well.
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Proposition 9 (i) If � (Q) < � (Q;P ), then � (QjB) > � (Q;P jB) for a su¢ -

ciently large minxp2(0;x]bb (xp).
(ii) If � (Q) � � (Q;P ), then � (QjB) � � (Q;P jB).

With no corruption, quality-price competition is a superior institutional setting

for the principal compared with quality-only when the principal�s net bene�t is

su¢ ciently large, but with corruption, introducing price competition can lead to a

worse outcome for the principal given the high price distortion involved.

7 Examples and discussion

Proposition 8 implies that there exists principal�s net payo¤ �v > 0 that makes

quality-price competition indi¤erent to quality-only, � (Q;P ) = � (Q). Consider a

uniform distribution F with support [0; 1]. Then, M (y;�v) = �3
2y
2+(�v + 1) y+

vL � 1
2 for y 2 [0; 1] and N (p;�v) = 2�(1 � �)[�vp + vL] � p for p 2 [0; 1], which

yields the solutions as below:

y� =

8<: �v+1
3 if �v � 2,

1 if �v � 2,
and p� =

8>>><>>>:
0 if �v < 1

2�(1��) ,

[0; 1] if �v = 1
2�(1��) ,

1 if �v > 1
2�(1��) .

It follows from Lemma 1 and Proposition 1 that HP wins with probability 1 when its

production cost c is smaller than y� in quality-price competition without corruption,

and from Lemma 2, HP wins with probability 1 when its production cost c is smaller

than p� in quality-only without corruption. Note that since 1
2�(1��) � 2, we have

y� > p� for �v < 1
2�(1��) and y

� � p� for �v � 1
2�(1��) . This shows that HP�s

winning probability is higher in quality-price competition than in quality-only for

each �v < 1
2�(1��) . Figure 1 describes the two optimal compensation schemes.
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Figure 1: Optimal shemes for the uniform case

Next, we �nd their corresponding maximum payo¤s as

M� (�v) =

8<:
(�v+1)2

6 + vL � 1
2 if �v � 2,

�v + vL � 1 if �v � 2,
and

N� (�v) =

8<: 2�(1� �)vL if �v � 1
2�(1��) ,

2�(1� �) (�v + vL)� 1 if �v > 1
2�(1��) .

If �v > 1
2�(1��) , then p

� = 1. Hence, Proposition 8 implies that quality-price

competition is better than quality-only, � (Q;P ) > � (Q) for �v > 1
2�(1��) , and

quality-only competition is better than quality-price, � (Q;P ) < � (Q) for a su¢ -

ciently small �v > 0. In addition, M� (�v) is a strictly increasing function of �v

for �v � 1
2�(1��) , there exists a unique �bv > 0 that makes � (Q;P ) = � (Q) such

that for all �v > �bv, � (Q;P ) > � (Q), and for all �v < �bv, � (Q;P ) < � (Q).
However, given a general CDF F , with no further restrictions, it cannot be

guaranteed whether there exists such a unique threshold level �bv > 0 that yields

� (Q;P ) = � (Q). We introduce the following conditions forM (y;�v) andN (p;�v),

and show that there exists a unique threshold level �bv > 0 given a general CDF F .
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Lemma 3 Suppose M (y;�v) and N (p;�v) are strictly concave functions of y and

p, respectively. If xf (x) � 1 for all x 2 [0; c], then y� > p� for �v < 1
2�(1��)f(c) and

y� = p� = c for �v � 1
2�(1��)f(c) .

Consider an exponential distribution F with support [0; 1]. Then, the condition

xf (x) � 1 is satis�ed for all x 2 [0; 1].18 Now, one can �nd y� > p� for y�; p� 2 [0; c]

if and only if

d [� (Q;P )� � (Q)]
d�v

= 2�(1� �) [F (y�)� F (p�)] > 0,

which in turn entails that HP�s winning probability is higher in quality-price compe-

tition, y� > p� for y�; p� 2 [0; c] if and only if � (Q;P )�� (Q) is a strictly increasing

function of �v. This implies the existence of a unique threshold level �bv > 0 for

� (Q;P ) = � (Q).

8 Concluding remarks

This paper models two �rms who compete to sell a product based on quality, price

and bribe, and examines how a simple institutional design can in�uence an agent�s

corrupt behavior.

We showed that the consequence of quality-only competition can be quite di¤er-

ent from that of quality-price competition depending on the presence of corruption.

Thus a designer for an allocation problem must be cautious when incorporating price

competition into resource-allocation mechanisms.

It is often reported that countries show di¤erent levels of corruption (see Mauro

(1995), Ades and Di Tella (1997), Ades and Di Tella (1999) and Treisman (2000)

among others). In underdeveloped countries, there are few legitimate or legal active

markets, so it happens that bribe systems replace market systems. This paper shows

18F (c) = 1�e��c
1�e�� for c 2 [0; 1] and a parameter 0 < � � 1. We have f (c) = �e��c

1�e�� and

cf (c) = �ce��c

1�e�� . Given � � 1, cf (c) has a unique maximum at c� = 1, and f (1)�1 = �e��

1�e�� �1 =
�e���1+e��

1�e�� � 0, where �e�� + e�� � 1 can be rewritten as 1 + � � e� for any � 2 (0; 1].
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that with corruption, introducing price competition can lead to adverse e¤ects on

the principal�s payo¤.

The penalty for getting caught by the government is not considered in the model,

because that will a¤ect both a high-quality �rm and a low-quality �rm.

Appendix I: Proofs

Proof of Lemma 1. Step 1. Consider any undominated Nash equilibrium

with strategies (�H ; �L). For q 2 fH;Lg, denote pq � sup[Supp[�q]] and pq �

inf[Supp[�q]]. Each �rm�s payo¤ is pq � �q when it wins, and it is 0 when it loses,

given �q 2 [0; c]. Hence, it is weakly dominated for �rm q to bid any price pq � �q
since there exists p0q > �q such that �rm q�s payo¤ can be positive for some bids by

the other �rm. Hence, p
q
� �q and �q must assign zero probability to �q, so pq > �q.

Step 2. We only show the proof for c < y, and one can apply similar steps to the

case with c > y. Since xH � xppH > xL � xppL , pL > pH � y, given LP�s weakly

undominated strategy (from step 1, p
L
� 0 and �L must assign zero probability to

0, so pL > 0), pH < y is never a best response for HP, so pH � y. It remains to show

that pH = y. Suppose pH > y. We �rst show pL = pH � y. Consider pL 6= pH � y

and WLOG, let pL > pH � y. Then, for pL > pH � y, LP�s expected payo¤ is 0, but

by switching the probability on pL > pH � y to pL < pH � y, LP obtains a positive

expected payo¤. Hence, we must have pL = pH � y. Note that pq > �q yields

pq � �q > 0 for q 2 fH;Lg and to satisfy the reservation payo¤ U , pL and pH must

be bounded. We consider two cases: (i) Suppose that �L assigns positive probability

to pL. Then, given pL, LP must obtain a positive expected payo¤, which implies

that �H must also assign positive probability to pH . Then, the tie-breaking rule

entails that either �rm does not play a best response. (ii) Suppose that �L assigns

zero probability to pL. Then, Pr
�L(pL � pL � ") ! 0 as " ! 0, which implies that

HP�s payo¤ becomes arbitrarily small as pH ! pH , but by choosing pH = y, HP

obtains a positive expected payo¤, so �H is not a best response for HP.

Step 3. Furthermore, there exists an undominated Nash equilibrium such that

22



HP bids y with probability 1, and LP mixes with a bid drawn from a uniform

distribution on [y; y + �] for a su¢ ciently small � > 0.

Proof of Proposition 1. First, the individual rationality condition (IR) is

binding for any solution to (P1). Then, we solve8<: maxx2

nR y

0 [vH � y]dF (c) +
R c
y [vL + y � c]dF (c)

o
s.t. � (x) = U (IR)

In addition, for each y 2 R+, xH = xpy + xL as de�ned in (1), so for each y 2 R+,

there exists x 2 
 such that � (x) = U as follows:

�2(xpy+xL�xpEc)+(1� �)2 xL+2�(1��)
�Z y

0
xLdF (c) +

Z c

y
[xpy + xL � xpc]dF (c)

�
= U .

Hence, the above maximization problem can be simply replaced by

maxy2R+

�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)

�
.

Any x 2 
 such that y > c cannot be a solution since its maximum value is given

as vH � y, but there exists x0 2 
 such that x0 yields y0 with y0 < y and � (x0) = U .

This enables us to restrict our attention to x satisfying y 2 [0; c]. There exists a

solution x� to (P1) such that � (x�) = U and y� where

y� 2 argmaxy2[0;c]
�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)

�
.

Proof of Proposition 2. Since U�H (x; c) = xH � xp(bb (xp) + c) + w(bb (xp)),
and U�L (x; 0) = xL � xpbb (xp) + w(bb (xp)), we have AH (x) = fx 2 
 : c > yg and

AL (x) = fx 2 
 : c < yg.

Step 1. Show that for each b0q 6= bb (xp), (p0q; b0q) is weakly dominated. Consider
max(pq ;bq)2R2+ [pq � bq] s.t. Uq (x; pq; bq) = Uq(x; p

0
q; b

0
q), (16)

which can be rewritten as

maxbq�0

�
xq + w (bq)� Uq(x; p0q; b0q)

xp
� bq

�
. (17)
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Since we pick (pq; bq) such that Uq (x; pq; bq) = Uq(x; p0q; b
0
q) in (16), the probability

that �rm q wins (�rm q loses) given (pq; bq) is the same as the probability given

(p0q; b
0
q), and furthermore, �rm q wins with positive probability for some bids by the

other �rm eq with eq 6= q. A unique solution to the problem (17) is the solution bb (xp)
from (8), which implies that for each b0q 6= bb (xp), (p0q; b0q) is weakly dominated.

Step 2. Find the winning bids. From step 1, we can only examine p for a �xedbb (xp), and the similar proof of Lemma 1 can be applied. By substituting bb (xp) into
the constraint below:

Uq (x; pq; bq) = U
�eq (x; �i) for eq 6= q, (18)

we can �nd each �rm�s winning bid

pH (x) = y +bb (xp) ; pL (x) = c� y +bb (xp) ,
where y is de�ned as y = �x=xp in (1).

Proof of Proposition 3. If xp � w0 (0), the result follows from (8). Let

xp < w0 (0) and we divide the proof for HP into two cases. The same argument

applies to the case in which LP wins, so the proof for LP is omitted.

Case 1. LP chooses to pay a bribe, and HP can win even without paying a

bribe. If HP does not pay a bribe, HP obtains p0H from xH � xppH = U�L (x; 0) such

that

p0H =
�x+ xpbb (xp)� w(bb (xp))

xp
= y � �xp

bb (xp) + w(bb (xp))
xp

.

If HP pays a bribe, then HP wins and obtains pH (x)�bb (xp) = y from Proposition

2. For xp < w0 (0), �xpbb (xp) + w(bb (xp)) > 0, so [pH (x) � bb (xp)] � p0H > 0, and

paying a bribe is optimal.

Case 2. LP chooses not to pay a bribe, and HP can win even without paying a

bribe.

If HP does not pay a bribe, HP obtains y from xH � xppH = xL. If HP pays a

bribe, then HP wins and obtains pyH such that

pyH =
�x� w(bb (xp))

xp
, so pyH �bb (xp) = y � �xpbb (xp) + w(bb (xp))xp

.
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Note that pyH is derived from Proposition 2 where U�L (x; �i) in (18) changes to xL.

For xp < w0 (0), �xpbb (xp) + w(bb (xp)) > 0, so [pyH � bb (xp)] � y > 0, and paying a

bribe is optimal.

Proof of Proposition 5. The individual rationality condition (IR) is binding

for any solution to (P1). Then, we solve8<: maxx2

nR y

0 [vH � y]dF (c) +
R c
y [vL + y � c]dF (c)�bb (xp)o

s.t. � (x)� xpbb (xp) = U (IR)

As in Proposition 1, for each y 2 R+, xH = xpy + xL, so for each y 2 R+, there

exists x 2 
 such that � (x)�xpbb (xp) = U . First, from Proposition 1, y� maximizesnR y
0 [vH � y]dF (c) +

R c
y [vL + y � c]dF (c)

o
. There exists x�p 2 (0; x] that minimizesbb (xp) since as xp ! 0, bb (xp)! +1. Hence, y� and x�p maximizes:�Z y

0
[vH � y]dF (c) +

Z c

y
[vL + y � c]dF (c)�bb (xp)� ,

and we can choose (x�H � x�L) such that y� = �x�=x�p = (x�H � x�L) =x�p.

Proof of Proposition 8. If �v is su¢ ciently large, p� = c. Since M� (�v) �

(vH � c) and N� (�v) = 2�(1� �)vH � c,

� (Q;P )� � (Q) � ��2Ec+ 2�(1� �) (vH � c)� 2�(1� �)vH + c

= ��2Ec� 2�(1� �)c+ c

= (2c� Ec)�2 � 2c�+ c > 0 for all � 2 (0; 1) ,

where the strict inequality follows from (2c� Ec) > 0 and

4c2 � 4c(2c� Ec) = �4c2 + 4cEc = 4c(Ec� c) < 0.

If �v is su¢ ciently small, p� = 0. SinceM� (�v) = (�v � y�)F (y�)+
R c
y� F (c) dc+

vL + y
� � c and N� (�v) = 2�(1� �)vL,

� (Q;P )� � (Q) = 2�(1� �)
�
(�v � y�)F (y�) +

Z c

y�
F (c) dc+ y� � c

�
� �2Ec
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Note that �
�y�F (y�) +

Z c

y�
F (c) dc+ y� � c

�
< 0 for any y� 2 [0; c] .

Hence, � (Q;P )� � (Q) < 0 for a su¢ ciently small �v.

Proof of Lemma 3. M (y;�v) and N (p;�v) have the solutions given as:

y� =

8<: by if �v � 1
f(c) + c,

c if �v � 1
f(c) + c.

and p� =

8>>><>>>:
0 if �v � 1

2�(1��)f(0) ,bp if �v 2 [ 1
2�(1��)f(0) ;

1
2�(1��)f(c) ],

c if �v � 1
2�(1��)f(c) .

We divide the case into two.

Case 1. 1
f(c) + c �

1
2�(1��)f(0)

Then, it is clear that y� > p� for �v < 1
2�(1��)f(c) and y

� = p� = c for �v �
1

2�(1��)f(c)

Case 2. 1
f(c) + c >

1
2�(1��)f(0)

(i) �v � 1
2�(1��)f(0) : Since y

� = by > 0 and p� = 0, y� > p�.
(ii) �v 2 ( 1

2�(1��)f(0) ;
1
f(c) + c): by and bp satisfy their �rst order conditions:

(�v � by) f (by) + 1� 2F (by) = 0; 2�(1� �)�vf (bp)� 1 = 0.
From the �rst or der condition of N (p;�v),

�vf (bp) = 1

2�(1� �) � 2.

Consider the �rst order condition of M (y;�v) given bp:
(�v � bp) f (bp) + 1� 2F (bp) =

1

2�(1� �) � bpf (bp) + 1� 2F (bp)
� 2� bpf (bp) + 1� 2F (bp)
= 1� bpf (bp) + 2 [1� F (bp)] > 0.

Since M (y;�v) is a strictly concave function of y, we have by > bp.
(iii) �v 2 [ 1

f(c) + c;
1

2�(1��)f(c)): Since y
� = c and p� < c, y� > p�.

(iv) �v � 1
2�(1��)f(c) : Note y

� = p� = c.
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Appendix II: Non-existence problem

Let the agent�s cost sharing be zSp for success, and zF p for failure, where p 2 R+ is

the purchase price of the product. We assume that zS ; zF 2 (0; z] where z � 1. The

agent compares xH � zHpH with xL� zLpL to choose a �rm. Denote �x � xH �xL
and

y � �x

zH
.

Then, if xH � zHc > xL or c < y, there exists pH > c such that xH � zHpH = xL.

If HP�s cost c is su¢ ciently low, then there is HP�s bid that ties with LP�s most

aggressive bid 0. Similarly, if xH � zHc < xL or c > y, there exists pL > 0 such that

xH � zHc = xL � zLpL, i.e.,

pL =
xL � xH + zHc

zL
=
zH
zL

�
c� xH � xL

zH

�
=
zH
zL
(c� y) .

Now, if HP�s cost c is su¢ ciently high, then there is LP�s bid that ties with HP�s most

aggressive bid c. For c = y, it is straightforward to �nd that a unique equilibrium

bid pro�le is (p�H ; p
�
L) = (c; 0). However, for c 6= y, there is no pure strategy Nash

equilibrium, and the existence of an equilibrium relies on a mixed strategy pro�le.

By restricting solutions to weakly undominated strategies, we can have a unique

equilibrium outcome such that for any equilibrium in weakly undominated strategies

satisfying the reservation payo¤ U , if c < y, HP bids y and wins with probability 1,

and if c > y, LP bids zHzL (c� y) and wins with probability 1.

Then, the principal�s gross payo¤ is given as

�(x; z) � �2(vH�Ec)+(1� �)2 vL+2�(1��)
�Z y

0
[vH � y]dF (c) +

Z c

y
[vL �

zH
zL
(c� y)]dF (c)

�
,

and similarly, the agent�s incentive payo¤ is

� (x; z) � �2(xH�zHEc)+(1� �)2 xL+2�(1��)
�Z y

0
xLdF (c) +

Z c

y
[xH � zHc]dF (c)

�
,

and the third term is derived from
R y
0 [xH�zHy]dF (c)+

R c
y [xL�zL

zH
zL
(c� y))]dF (c).

The principal�s net payo¤ is the di¤erence between the principal�s payo¤ and

the agent�s incentive payo¤. Then, the principal solves the following maximization
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problem: 8<: max(x;z)2
[� (x; z)� � (x; z)]

s.t. � (x; z) � U (IR)

First, the individual rationality condition (IR) is binding for any solution to (P1).

Then, we solve8<: max(x;z)2


nR y
0 [vH � y]dF (c) +

R c
y [vL �

zH
zL
(c� y)]dF (c)

o
s.t. � (x; z) = U (IR)

Since zL disappears in the constraint � (x; z), for any solution, zL = z. Suppose

there exists a solution with �x�, z�H and y� = �x�=z�H . Choose z
0
H 2 (0; z�H) and

�x0 such that y� = �x0= z0H . Then, the principal�s net payo¤ strictly increases while

(IR) is still satis�ed.
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