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Abstract

The standard model of jury voting with exogenously given noisy
but informative signals about the true state of the world predicts that
the efficiency of group decision-making increases unambiguously with
the group size. However, once signal acquisition is made a costly, en-
dogenous decision, there are important free-riding consideration that
counterbalance the information aggregation effect. If the cost of ac-
quiring information is fixed, then rational voters have disincentives
to purchase information as the impact of their votes becomes smaller
with a larger group size. An implication of this trade-off between infor-
mation aggregation and free-riding is that there will exist an optimal
group size for given voting costs and signal precisions. We investigate
the extent to which these trade-offs are relevant in an laboratory ex-
periment with human subjects where we very the group size, the cost
to voting and the signal precision. We find in most settings, a pro-
nounced tendency to over-acquire information relative to equilibrium
predictions and we offer several possible explanations for this finding.
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1 Introduction

Condorcet’s jury theorem (Condorcet 1785) asserts that if a group of indi-
viduals have common preferences with regard to some binary outcome (e.g.,
convicting the guilty or acquitting the innocent) and independent, noisy but
informative private signals about the true state of the world (e.g., guilt or
innocence) then, under majority rule, the correct outcome is more likely to
be achieved as the number of voters is increased. Feddersen and Pesendorfer
(1997) have shown that this result is robust to strategic or insincere voting,
where voters may rationally vote against their private information; even if
voters vote strategically against their signals, they do so in an optimal way,
and as a consequence, information aggregation continues to improve with
increasing group size. An implication of these results for optimal voting
mechanisms is that, under the maintained assumptions, we can always make
a voting mechanism better by adding more voters. However, this result as-
sumes that private signals about the true but unknown state of the world
are costless and exogenously provided. In this paper we study the question
of endogenous and costly information aggregation where voters must first
decide whether to acquire a costly signal about the true state of the world
prior to voting to convict or acquit. In particular, we present the results from
a laboratory experiment designed to explore how the number of players, the
cost of information and the informativeness of signals matter for information
aggregation by juries or committees.

The basic set-up of our experiment is the Condorcet jury model in which
voters must make a decision as a group about whether to convict or acquit
a defendant, based on private noisy signals about whether the defendant is
guilty or innocent. When signals are freely provided to voters, the voters
can do better - make the correct decision with a higher probability - with
a larger group size. However, this group size effect no longer holds when
information is endogenous and its acquisition involves a costly decision. If
voters are asked to buy private signals at a fixed cost to be better informed
about the true (but unknown) state of the world, then there is an important
free-riding consideration that counterbalances the larger group size, better
information aggregation effect. As we add one more voter to a group, and as
long as this voter still has an incentive to acquire information (with positive
probability), the information aggregation effect implies a higher probability
of making a correct group decision (a positive effect on the efficiency of group
decisions). On the other hand, the entire group of voters are less likely to
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acquire information as we add one more voter because the likelihood that any
single vote will be pivotal now diminishes with increases in the group size,
i.e., free-riding motivations with regard to information acquisition introduce
a negative effect on the efficiency. As we increase the group size with any fixed
voting rule, the information aggregation effect is dominant at first and hence
we have an increase in the efficiency of group decision-making up to a certain
group size. Beyond that group size, the free-riding effect becomes dominant,
resulting in a decrease in efficiency. Persico (2004) and Koriyama and Szentes
(2009) show the existence of an upper bound on the optimal group size in
Condorcet jury environments with costly information acquisition.

Those theoretical papers provide us with testable hypotheses that we
evaluate in our laboratory experiment. In particular, increases in the group
size should result in an increase in efficiency under the free information treat-
ment. However, under costly information, efficiency should only increase up
to a certain group size and then drop off to a minimal level. The reason for
the latter drop-off in efficiency arises from a (possibly) huge decrease in the
rate of information acquisition as the group size increases. Depending on
the choice of parameters, all voters may have an incentive to acquire infor-
mation up to a certain group size, but beyond that group size no individual
has an incentive to acquire information. The result is a dramatic fall in the
efficiency of group decision-making with endogenous information. Thus the
theory puts an upper bound on the optimal group size when information
choice is endogenous, and one purpose of our experiment is to determine
whether this upper bound really matters among the laboratory subjects who
are asked to make a decision about the purchase of costly information. In
addition to increasing group size, we also vary the cost of information ac-
quisition and the precision of the signal processes. Changes in these model
variables can have similar effects on the efficiency of group decision-making
as we discuss in detail.

The rest of the paper proceeds as follows. In section 2 we discuss related
literature. Section 3 presents the theoretical models and the equilibrium pre-
dictions. In section 4 we outline our experimental design and in section 5
we state our research hypotheses with numerical predictions under the pa-
rameter setups that are used in the experiments. In section 6 we present our
main findings and we also we offer several explanations for why, in certain
treatments, information acquisition departs from theoretical predictions. Fi-
nally, section 7 concludes with a summary of our main findings and some
suggestions for future research.
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2 Related Literature

As noted in the introduction, the theory of endogenous information acqui-
sition in the Condorcet jury model set-up begins with Persico (2004). He
observes that if agents must decide whether to privately gather costly and
noisy information that is then aggregated to reach a collective decision, the
information acquisition decision is properly viewed as a free-rider problem
with the result that information acquisition will generally be less than the
social optimum. As a consequence, the optimal voting rule must take ac-
count of the precision of the the noisy information. Rules that require a high
degree of consensus (e.g., near-unanimity) can only be optimal if the signal
precision is sufficiently high so that free-riding in information acquisition is
deterred. If signals are not very precise, then the optimal voting rule cannot
be too demanding. An implication of this observation is that for any given
signal precision and voting rule there will exist an optimal committee size,
and in contrast to the standard Condorcet Jury Theorem, larger committees
will not always be welfare-improving. Mukhopadhaya (2003) and Koriyama
and Szentes (2009) also explore the Condorcet Jury model under endogenous
information acquisition and show that larger than optimal committee sizes
do lead to social welfare losses relative to smaller committee sizes, but that
these losses might not be so great. Gerardi and Yariv (2008) take a mech-
anism design approach and show that the optimal voting mechanism is in
general not ex-post efficient; distoritions have to be introduced to ensure that
agents have incentives to acquire information. Martinelli (2006, 2007) and
Oliveros (2013) also study endogenous, costly and noisy information acqui-
sition but consider the case where the signal precision is the choice variable,
with more precise signals being more costly. Martinelli shows that if the
marginal cost of the signal precision is zero at the lowest level of precision
then voters acquire some information even in large electorates and that the
voting outcome is asymptotically efficient. Oliveros (2013) adds abstention
and shows that those acquiring more precise information do not necessarily
abstain less often.

Early experimental studies of the Condorcet jury model focus on the
case of exognenous information provision: Guarnaschelli, McKelvey and Pal-
frey (2000), Battaglini, Morton and Palfrey (2010), Goeree and Yariv (2011)
and Bhattacharya, Duffy and Kim (2014). More recent experimental studies
of the jury model have also explored the consequences of endogenous in-
formation acquisition: Großer and Seebauer (2013) and Elbittar, Gomberg,

4



Martinelli and Palfrey (2014).1 Großer and Seebauer (2013) study costly
information acquisition by groups of size 3 or 7 and focus on the question
of whether compulsory rather than voluntary voting, where abstention is al-
lowed provides greater incentives for voters to acquire information (it does).
Elbittar, Gomberg, Martinelli and Palfrey (2014) explore endogenous infor-
mation acquisition under a voluntary voting mechanism focusing on the ex-
tent to which the voting rule, majority or unanimity matters for information
acquisition and participation in voting. By contrast, we focus only on the
majority rule, compulsory voting setting where we vary not only the group
size, but also the cost of acquiring information (signals) about the true state
of the world as well as the precision of those signals. Our design thus en-
ables a more complete assessment of the comparative statics implications of
group size, information cost, and signal precision for information acquisition
all under the majority rule, compulsory voting mechanism.

3 The Model

Our experiments are based on the standard Condorcet Jury model set-up
with the addition of an endogenous information acquisition stage that takes
place prior to the voting stage. Within this environment we consider the
comparative statics implications of varying the information acquisition cost,
c, the group size, N , and the signal precision, x.

In all of our experimental settings (or “treatments”) a group consisting
of an odd number, N , of individuals faces a choice between two alternatives,
labeled R (Red) and B (Blue). The group’s choice is made in an election
decided by majority rule, that is, the alternative, R or B that receives more
than N/2 votes is the group’s decision. It is common knowledge among voters
that there are two equally likely states of nature, ρ and β, i.e., all voters have
the common prior Pr[ρ] = Pr[β] = .5. Alternative R is commonly known to
be the better choice in state ρ while alternative B is commonly known to be
better choice in state β. Specifically, in state ρ each group member earns a
payoff of M > 0 if R is the alternative chosen by the group and 0 if B is
the chosen alternative. In state β the payoffs from R and B are reversed.
Formally, we have

1We only became aware of these studies after we had begun working on this project.
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U(R|ρ) = U(B|β) = M,

U(R|β) = U(B|ρ) = 0.

Prior to the voting decision, each individual may acquire a costly private
signal regarding the true state of nature. This signal can take on one of two
values, either r or b. The probability of receiving a particular signal depends
on the true state of nature. Specifically, each subject choosing to acquire a
signal receives a conditionally independent signal where

Pr[r|ρ] = Pr[b|β] = x.

Voters who do not acquire a signal have no more information about the true
state of the world than the initial common prior that the two states are
equally likely.

We suppose 1/2 < x ≤ 1 so that signals are informative but possibly
noisy. More precisely we will consider cases where 1/2 < x < 1, so that the
signal is noisy but informative as well as cases where x = 1, and the signal
(if purchased) is perfectly informative. The latter eliminates fundamental
uncertainty so that the voter only faces strategic uncertainty as to the in-
formation acquisition choies of other voters. Given that x > 1/2 signal r
is associated with state ρ while the signal b is associated with state β (we
may say r is the correct signal in state ρ while b is the correct signal in state
β). It can be easily checked that when the signal precision is symmetric the
posterior probabilities that signals are matched with the correct states are
the same in both states and given by the signal precision parameter x:

Pr[ρ|r] = Pr[β|b] = x.

It is important to note that if information is free, c = 0, then each
individual gets at no cost a private signal whose conditional probability is
as above. However, if information is costly, then each individual can decide
whether to acquire this private signal at a fixed cost c > 0. In the latter case,
an individual’s payoff is U(A|ω)− c, where A is the group decision outcome
and ω is the state of nature (i.e., payoffs are either M − c or −c, depending
on the correctness of group decision), if she acquires a private signal. Payoffs
are the same as before, i.e., U(A|ω), if she doesn’t acquire a signal.
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Having specified the preferences and information structure of the model,
we next discuss the strategies, equilibrium conditions and equilibrium pre-
dictions for each of the two voting mechanisms that we explore in our exper-
iment. We restrict attention to symmetric equilibria in weakly undominated
strategies as these are the most relevant equilibrium concepts given the in-
formation that is available to subjects in our experiment. In particular, we
require that in equilibrium (i) all voters of the same signal type play the
same strategies and (ii) no voter uses a weakly dominated strategy. We will
discuss later the possibility of multiple, or more precisely asymmetric, equi-
libria, but our design involves the choice of parameters that entails a unique
symmetric equilibrium (in weakly undominated strategies).

3.1 Voting with Free Information

When information is free, the strategy of a voter is a specification of two
probabilities (vr, vb) where vr is the probability of voting for alternative R
given an r signal and vb is the probability of voting for B given a b signal
(that is, vs is the probability of voting according to one’s signal s, or voting
sincerely). When c = 0, there exists a unique symmetric equilibrium in
weakly undominated strategies. In this equilibrium, we obtain a sincere
voting equilibrium (v∗r = v∗b = 1) if the signal precision is symmetric (i.e.,
Pr[r|ρ] = Pr[b|β]) and voting is by majority rule (as in our model).2

In a sincere voting equilibrium, an individual must strictly prefer voting
according to his/her signal, s ∈ {r, b}, conditional on her vote being pivotal
(given that the other individuals are also playing equilibrium strategies).
This observation yields the following equilibrium conditions:

U(R|r)− U(B|r) ≡ M

2
{Pr[ρ|r] Pr[Piv|ρ]− Pr[β|r] Pr[Piv|β]} > 0,

U(B|b)− U(R|b) ≡ M

2
{Pr[β|b] Pr[Piv|β]− Pr[ρ|b] Pr[Piv|ρ]} > 0,

2However, sincere voting equilibrium is in general not robust to the introduction of
asymmetry in the voting environment. We often have an equilibrium in which voters
with one signal type always vote for the signal (vote sincerely, i.e. v∗s = 1) while those
with the other signal type mix between the two alternatives (i.e., v∗−s ∈ (0, 1)), e.g.,
if signal precision is asymmetric (Pr[r|ρ] 6= Pr[b|β]) or if voting outcome is decided by
supermajority/unanimity rule.
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where U(A|s) is the payoff the voter gets when alternative A ∈ {R,B} is
chosen and her signal (type) is s ∈ {r, b}; and Pr[Piv|ω] is the probability
that the voter’s vote is pivotal in state ω ∈ {ρ, β}. A vote is pivotal only
when both alternatives R and B get the same number of votes. Since the
pivot probabilities depend on voter strategies (vs), we can check the above
conditions by fixing strategies (v∗r = v∗b = 1) and assigning values for the
model parameters. We can also easily obtain, under sincere voting strate-
gies, the probability of making a correct group decision (our measure for the
efficiency of group decision).

3.2 Voting with Costly Information

When information is costly, we must consider not only the voting strategy
but also the information acquisition strategy which we denote by σ ∈ [0, 1],
where σ = 1 (denoted σ1) means “acquire information,” while σ = 0 (de-
noted σ0) means “do not acquire information,” and σ ∈ (0, 1) denotes the
probability with which a voter acquires information. As most of our experi-
mental treatments involve c > 0, the voter’s information acquisition strategy
σ, as opposed to their voting strategy, vs, will be the main focus of our
paper. One reason for focusing on the information acquisition strategy is
that in the symmetric equilibrium that we consider, all voters who choose
to acquire costly information will continue to vote sincerely according to the
signal they receive, i.e., conditional on purchasing a signal, vs = 1, just as
in the case where information is costless. Voters who don’t acquire informa-
tion in the costly information case simply randomize over the two alternative
with equal probability, consistent with the commonly held prior belief that
the two possible states of the world are equally likely. Thus, an equilibrium
in the majority rule, symmetric signal precision environment that we con-
sider is essentially characterized by the equilibrium information acquisition
probability, σ∗, alone.

Under costly information acquisition, there may exist multiple equilibria
(including asymmetric equilibria) where individuals acquire information with
positive probability (σ∗ > 0).3 However, we always choose our parameter
values such that voting game in our experiment has a unique symmetric

3Since subjects are randomly matched to form a different group in each round of a
session (which will be explained in detail in the next section about experimental design), we
doubt that subjects could find a way to coordinate on the play of asymmetric equilibrium.
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equilibrium. We report a zero information acquisition equilibrium (σ∗ =
0) only when there doesn’t exist an equilibrium with positive information
acquisition.

When we have an interior solution, σ∗ ∈ (0, 1), a voter must be indifferent
between acquiring and not acquiring information. This observation yields the
following equilibrium conditions:

U(σ1) ≡
M

2
{Pr[ρ|r] Pr[Piv|ρ] + Pr[β|b] Pr[Piv|β]} − c

=
M

2
{1

2
Pr[Piv|ρ] +

1

2
Pr[Piv|β]} ≡ U(σ0)

Of course, the above condition holds with strict inequality when we have
a corner solution, e.g., U(σ1) > U(σ0) if σ∗ = 1 in which case every voter
acquires information for certain in equilibrium. Again, the solution value σ∗

is then used for the calculation of efficiency.

4 Experimental Design

We consider three main treatment variables: 1) the group size N , 2) the
information cost c and (3) the signal precision x. We adopt a between sub-
jects experimental design so that in each session subjects only make decisions
under a single set of treatment variables.4

The experiment is presented to subjects as an abstract group decision-
making task using neutral language that avoided any direct reference to vot-
ing, elections, jury deliberation, etc., so as not to trigger some other possi-
ble (non-theoretical) motivations for voting (e.g., civic duty, the sanction of
peers, etc.).

Each session consisted of a multiple of N inexperienced subjects and 25
rounds. At the start of each and every round, subjects were randomly allo-
cated to groups of size N and this random assignment was public knowledge.5

4That is, in each session, the group size N , information cost c and signal precision x is
held fixed for all rounds of the session.

5Our intention was to eliminate repeated game dynamics enabling, for instance, coordi-
nation on asymmetric equilibria or other collusive outcomes thereby making our symmetric
equilibrium predictions more salient.
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Each group of size N is then assigned to either a red jar (state ρ) or a blue jar
(state β) with equal probability, thus fixing the true state of nature for each
group. No subject knows which jar is assigned to her group. The assignment
of groups and jars are determined randomly at the start of each new round
so as to avoid possible repeated game dynamics. Subjects do know that it is
equally likely that their group is assigned to a red or a blue jar at the start
of each round, that is, we took care to implement this common prior belief
among the subjects.

The red jar was known to contain a fraction x of red balls (signal r)
and a fraction 1− x of blue balls (signal b) while the blue jar was known to
contain a fraction x of blue balls and a fraction 1−x of red balls. We fix this
signal precision either at x = 0.7 or at x = 1 in a given session, and these
signal precisions were made public knowledge in the written instructions.
We thus implement symmetric signal precisions so as to facilitate subjects’
understanding of equilibrium strategies in the compound decision making
situations of information acquisition and voting. In addition, as we have
previously noted, symmetric signal precisions rule out strategic (insincere)
voting under the majority rule compulsory voting mechanism that we employ.

The sequence of moves in a round of the free (c=0) information treatment
sessions was as follows. First, each subject blindly and simultaneously drew
a ball (with replacement) from her group’s (randomly assigned) jar. This is
done virtually in our computerized experiment; subjects click on one of 10
balls on their decision screen and the color of their chosen ball is revealed.6

While the subject observes the color of the ball she has drawn, she does
not observe the color of any other subject’s selections or the color of the jar
from which she has drawn a ball. The group’s common and publicly known
objective is to correctly determine the jar, “red” or “blue”, that has been
assigned to their group.

After subjects have drawn a ball (signal) and observed its color, they next
make a “choice” (i.e., vote) between “red” or “blue”, with the understanding
that their group’s decision is red if a majority of group members choose red
and the group’s decision is blue otherwise and that the group’s aim is to
correctly assess the jar (red or blue) that is assigned to the group. We can’t
have a tie for any group size N since N is always chosen to be odd, so a

6For each round and for each subject, the assignment of colors to the 10 ball choices
the subject faces are made randomly according to whether the jar the subject is drawing
from is the red (in which case percentage x of the balls are red) or blue (in which case
percentage x balls are blue).
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group’s decision is either red or blue.
In sessions of treatments with costly information acquisition, the sequence

of moves was similar to the costless case, but the first choice that each subject
made was whether or not to pay the cost c > 0, to draw a ball from her
group’s jar. If a subject decided to draw a ball, then she drew a ball from
her group’s jar where the composition of red and blue balls was exactly the
same as described for the free information case. Differently from the free
information case, subjects who chose not to draw a ball had to wait until
other group members (if any) finished drawing a ball. After the information
acquisition decision was made and any voters who chose to pay the cost of
drawing a ball had drawn their ball and observed its color, play proceeded
to making a choice between red or blue for the color of the group’s jar. All
voters, regardless of whether or not they chose to draw a ball had to make a
decision red or blue as to the color of their group’s jar for that round. The
group’s decision was again determined according to majority rule.

Payoffs in each round were determined as follows. If the group’s decision
via majority rule was correct, i.e., the group’s decision is red (blue) and
the jar assigned to that group is in fact the red (blue) jar, then each of N
members of a group received at least 100 points (M = 100). If the group’s
decision is incorrect, then each of the N members of the group received at
least 0 points. Adjustments to these payoffs depended on whether there was a
positive cost to information acquisition and if so, whether the subject chose
to pay that cost to acquire information. Specifically, in treatments where
c > 0, we endowed each subject with c points at the start of each round.
If a voter decided not to draw a ball (buy information), then she kept her
endowment of c points and also earned the group-wide payoff in points as well,
which depended on whether the group got the decision correct (100 points) or
incorrect (0 points). Thus, by not acquiring information, the subject earned
either 100 + c or c points depending on her group’s decision under majority
rule. By choosing to acquire information, the subject agreed to give up her
endowment of c points for the period, so that her total earnings would be
either 100 or 0 points depending again on whether the group decision was
correct or not. Notice that we have implemented the cost of drawing a ball
(obtaining a signal) as an opportunity cost, so as to avoid the possibility of
negative payoffs.7 We vary the magnitude of information acquisition cost

7Levine and Palfrey (2007) and Bhattacharya et al. (2014) implement voting costs in
this same manner.
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c ∈ {5, 8, 15, 25}. The parameterization of the payoff function (i.e., the value
of c) was held constant across all rounds of a session and subjects were paid
the cumulative total of their points earned from all rounds played.

Following 25 rounds of play, the session was over. Subjects’ point totals
from all 25 rounds of play were converted into dollars at the fixed and known
rate of 1 point = $0.01 and these dollar earnings were then paid to them
in cash and in private. In addition, subjects were given a $5 cash show-up
payment.

Treatment Conditions No. of Session No. Subjects No. of Rounds
N c x Sessions Labels per Session per Session
3 0 0.7 4 VFI 1-4 6 25
3 5 0.7 4 VCI 1-4 6 25
3 8 0.7 4 VCI 5-8 6 25
7 0 0.7 1 VFI 5 14 25
7 5 0.7 4 VCI 9-12 14 25
7 8 0.7 4 VCI 13-16 14 25
13 8 0.7 4 VCI 17-20 26 25
7 15 0.7 2 VCI 21-22 14 25
3 8 1 4 VCI 23-26 6 25
7 8 1 4 VCI 27-30 14 25

Table 1: The Experimental Design

Table 1 summarizes our experimental design, which involves 5 voting
sessions with with free information (VFI) and 30 voting sessions with with
costly information (VCI) Subjects were recruited from the undergraduate
population of the University of Pittsburgh and the experiment is conducted in
the Pittsburgh Experimental Economics Laboratory. No subject was allowed
to participate in more than one session of this experiment.

5 Research Hypotheses

Table 2 shows symmetric equilibrium predictions for each combination (N, c, x)
of treatment variables in our experiment.
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x=0.7 N = 3 N = 7 N = 13
σ∗ w∗ σ∗ w∗ σ∗ w∗

c = 0 n/a 0.784 n/a 0.874 n/a 0.938
5 1 0.784 0.6693 0.773 0 0.5
8 1 0.784 0 0.5 0 0.5

15 0 0.5 0 0.5 0 0.5
x=1 N = 3 N = 7 N = 13

σ∗ w∗ σ∗ w∗ σ∗ w∗

c = 5 0.8944 0.992 0.5621 0.955 0.3561 0.912
8 0.8246 0.978 0.4472 0.902 0.2359 0.810

15 0.6325 0.911 0.1163 0.625 0 0.5
* σ∗ = Equilibrium rate of information acquisition.
† w∗ = Equilibrium efficiency.

Table 2: Symmetric Equilibrium Predictions

Based on the equilibrium predictions shown in Table 2, we formulate four
main research hypotheses concerning the effect of our three treatment vari-
ables on the frequency of information acquisition (and hence on the frequency
of a group’s making correct decisions - the efficiency of group decision-making
always moves in the same direction as the rate of information acquisition, as
Table 2 reveals).

H0. Condorcet Jury theorem: When information is free and
informative, group decisions under majority rule improve as the
group size increases.

If information is free (c = 0), then there is only an information aggre-
gation effect, so we should observe an increase in the efficiency of group
decision as we increase the group size. This is the main conclusion of Con-
dorcet’s (1785) original jury model where information was also assumed to
be free and informative and represents the first application of the law of large
numbers in the social sciences. While this treatment is not the main focus
of our analysis, it serves as a benchmark case and we are not aware of any
prior experiments that test this simple information aggregation hypothesis.

H1. Group size effect: For any fixed (positive) information
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cost and signal precision (c, x) ∈ {5, 8, 15} × {0.7, 1}, the frequency
of information acquisition decreases as we increase the group size
from N = 3 to N = 5, and to N = 13.

If information is costly, then a free-riding incentive effect arises that com-
petes with the information aggregation effect, and for any fixed cost c and
fixed precision x, the free-riding effect will eventually dominate the informa-
tion aggregation effect so that we reach a group size at which the aggregation
incentive to acquire information totally disappears (σ∗ drops to 0). This drop
occurs because the probability that an individual’s vote is pivotal decreases
and converges to zero as the group size becomes large. In general, whenever
information is costly to acquire, the equilibrium rate of information acqui-
sition and group decision efficiency decreases as we increase the group size
beyond a certain point.

H2. Cost effect: For any fixed group size and signal precision
(N, x) ∈ {3, 7, 13} × {0.7, 1}, the frequency of information acquisition
decreases as we increase the information acquisition cost c.

The effect of information cost is straightforward: the higher the cost of
information acquisition, the less likely people are to acquire information.
However, there might be some salience issue. For example, theoretically
speaking, an information cost of c = 8 should be sufficiently large enough
to dissuade voters from acquiring any information. Behaviorally speaking,
voters may feel that such a cost level is not sufficiently large enough compared
to the level of benefit from a correct group decision (100 points), and therefore
they may continue to acquire information with a positive frequency. Hence,
it is of interest to consider whether we will obtain the cost effect as cleanly
as predicted by the theory.

H3. Signal precision effect: For some fixed group size and in-
formation cost (N, c), the frequency of information acquisition can
decrease as we increase the signal precision from x = 0.7 to x = 1.

As we increase the signal precision, there are again two effects that work
against one another. On the one hand, a more precise signal will induce
individuals to invest in information with a higher frequency holding the cost
of information acquisition constant. On the other hand, a better quality of
information makes an individual’s vote less likely to be pivotal since those
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who have acquired the more precise signal are now more likely to vote for
the correct alternative. Overall, whether voters acquire information with a
higher frequency depends on which effect is dominant. Here, if subjects are
purely decision-theoretic and don’t fully understand the strategic interactions
associated with the collective decision problem at hand, then the frequency
of information acquisition will increase whenever we increase the signal pre-
cision. However, if and only when they reason game-theoretically, they will
acquire information less frequently, facing a more precise signal, especially
for relatively smaller group size and information costs (see Table 2).

These four hypotheses H1-H4 are the main hypotheses to be tested against
our experimental data.

6 Experimental Results

We discuss our experimental findings at both the aggregate and the individual
level. We first focus on aggregate level findings which we use to address
hypothese H1-H4.

6.1 Aggregate Data

Tables 3-4 report the aggregate proportions of information acquisition and
efficiency achieved for treatments with signal precision x = 0.7 and x = 1
respectively, over all rounds of all sessions of all treatments as well as the
average proportions over all sessions of each treatment combination (N, c, x).
Figure 1 shows the average frequency of information acquisition and the
average level of efficiency.

We first observe in Table 3 that when information is free (c = 0) and
signals are noisy but informative, (x = 0.7) that efficiency is increasing with
the group size in support of the Condorcet Jury theorem, [H0]. In particular,
we see that efficiency averages 76 percent in the c = 0, x = .7 and N = 3
treatment, while it is higher at 84 percent in the c = 0, x = .7 and N = 7
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Figure 1: Overall Frequency of Information Acquisition and Efficiency
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treatment.8 Thus with free information, a larger group size yields higher
efficiency.

We next look at the group size effect, [H1]. Fixing c = 5 and x = 0.7
Table 3 reveals that the mean frequency of information acquisition increases
as N is increased from 3 to 7, rising from 69.5% to 76.7% but the difference
is not statistically significant according to Mann-Whitney tests on session-
level averages (p > .10). By contrast, the theory predicts a movement in the
opposite direction from 100% information acquisition to 66.9%). Next, fixing
c = 8 and x = 0.7, Table 3 indicates that the mean frequency of information
acquisition decreases slightly as N is increased from 3 to 7 and finally to 13,
from 58.17% to 51.36% to 46.31%, respectively. These differences are again
not statistically significant (p > .10). Still, the decline in the frequency
of information acquistion as N is increased is consistent with the theory,
though the magnitude of the acquisition frequencies departs substantially
from theoretical predictions: the theory predicts a movement from 100%
when N = 3 to 0% frequency of information acquisition when N = 7 or 13.

Remarkably, at Table 4 reveals, the group size effect is much more clear
when signals are perfectly precise signal (x = 1). In that case, the mean
frequency of information acquisition drops significantly from 81.5% when
N = 3 to 55.64% when N = 7 (p < .02). The theoretical prediction is that
82.4% purchase information when N = 3 falling to 44.72% when N = 7.
Hence, in this case, not only do the experimental data reflect the group
size effect, but in addition, the mean frequencies of information acquisition
are closer to the theoretical predictions for both group sizes N = 3 and
N = 7. This may be because we have interior predictions at x = 1 whereas
mostly boundary predictions, either 0% or 100%, at x = 0.7. Moreover,
the elimination of noise in the signal seems to make subjects understand the
free-riding effect more clearly.

We next turn to the information cost effect [H2]. Fixing N = 3 and x =
0.7, the first column of Table 3 reveals that an increase in the cost of acquiring
information from c = 5 to c = 8 results in a decrease in the frequency
of information acquisition from 69.5% to 58.17%; but this decrease is not
statistically significant (p > .10). However, as we further increase the cost

8We only have a single observation of the n = 7 treatment and so we cannot perform
statistical tests. However, we suspect that more sessions would not overturn this finding
so long as subjects voted sincerely with their signal choice, as in that case the hypothesis
just reflects the more accurate information aggregation that is possible with a larger group
size.
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to c = 25, the frequency of information purchase drops more dramatically to
27.1% and this drop is statistically significant (p < 0.03 in the comparison
of c = 8 vs. c = 25). Fixing N = 7 and x = 0.7, the same increase in
the cost of acquiring information from c = 5 to c = 8 results in a decrease
in the frequency of information acquisition from 76.71% to 51.36% - theory
predicts a fall from 66.93% to 0% - and this decrease is marginally significant
(p = 0.08). For N = 7 (and x = 0.7), we further increased that cost to c = 15
(just two observations) and this resulted in an even lower mean frequency
of information acquisition of 41.15%, but still much higher than the rational
choice prediction of 0%.

We finally consider the signal precision effect [H3]. Fixing N = 3 and
c = 8, Tables 3-4 reveal that an increase in the signal precision from x =
0.7 to x = 1 results in an increase in the mean frequency of information
acquisition from 58.17% to 81.5% and this difference is statistically significant
(p = 0.04). The theoretical prediction, by contrast, is for a decrease from
100% to 82.46%. On the other hand, fixing N = 7 and c = 8, an increase in
the signal precision from x = 0.7 to x = 1 results in a slight increase in the
frequency of information acquisition - from 51.36% when x = 0.7 to 55.64%
when x = 1. This difference is not statistically significant (p > .10). Still,
the increase is consistent with the theoretical prediction, which calls for an
increase in information acquistion from 0% to 44.72% as x is increased from
0.7 to 1.

Table 5 shows the average frequencies of information acquisition and effi-
ciency disaggregated according to the first 13 rounds and the last 12 rounds
of each session. There is no clear pattern, or much evidence of learning (or
equilibrium behavior), for the change in the mean frequency of information
acquisition as we go from the first-half to the second-half of these sessions.
These frequencies increased or decreased, depending on specific treatments
or sessions. Although the frequency of information acquisition has dropped
under many treatment conditions, the mean level of efficiency has almost
always increased when we compare the first-half with the second-half. Hence
there is some evidence that subjects learn to achieve a better group deci-
sion outcome over time, although we fail to find evidence for their behavior
converging to equilibrium predictions.

Summarizing, using session level means, there is poor evidence in support
of the point predictions of the theory (except in the case where x = 1) and
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some mixed evidence with regard to the comparative statics predictions of the
theory across treatments. We next turn our attention to exploring individual
subject behavior in further detail so as to determine whether our aggregate
measures (session means) may be masking any larger behavioral differences
across treatment conditions.

6.2 Individual Behavior

Figure 2 shows the cumulative distributions of the frequency of information
acquisition over all rounds, for signal precision x = 0.7. Figure 3 compares
the same distributions between different signal precisions for various levels
of group sizes and information costs.

Figure 2: Distribution of the Individual Frequencies of Information Acquisi-
tion over All 25 Rounds, x = 0.7

Consider first the case where the signal precision is fixed at x = 0.7.
When c = 5, the upper left panel of Figure 2 reveals that the cumulative
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frequency of information purchase when N = 7 stochastically dominates the
cumulative frequency of information purchase when N = 3, which is com-
pletely opposite to theoretical predictions. By contrast, when c = 8, the
upper right panel of figure 2 reveals that increases in group size largely fol-
low the comparative static prediction that information acquisition decreases
as the group size gets larger. Indeed, for this case, the cumulative frequency
of information purchase when N = 3 stochastically dominates the cumulative
frequency of information purchase when N = 13. The bottom two panels
of Figure 2 confirm that the individual distributions follow the comparative
static prediction that increases in information cost are associated with less
information acquisition for groups of size N = 3 and N = 7 (we administered
only one cost level c = 8 for the larger group size N = 13). Indeed, for N = 7
we see clearly that the cumulative frequency of information acquisition when
c = 5 stochastically dominates the cumulative frequency of information ac-
quisition when c = 8, which in turn stochastically dominates the cumulative
frequency of information acquisition when c = 15

The cumulative frequency distributions in Figure 3 enable us to examine
the effect of changes in signal precision. Here we fix c = 8 as this is the
only cost level we administered for signal precision x = 1. We find that
the equilibrium effect of signal precision could not be found well in our data
for either group sizes N = 3 and N = 7. We found that the frequency
of information acquisition has invariably increased as we increase the level
of signal precision from x = 0.7 to x = 1. However, the theory predicts,
depending on specific parameter values, sometimes a decrease (e.g., from
100% to 82.46% for N = 3, c = 8) and sometimes an increase (e.g., from 0%
to 44.72% for N = 7, c = 8), again as a consequence of competition between
information aggregation effect and free-riding effect (pivot effect). In this
regard, our data may be better explained by decision-theoretic predictions
that dictates higher frequency of information acquisition as the quality of
information becomes better. The proportion of the subjects who behave
according to decision-theoretic principle should be large enough to sway the
overall results in their favor while the game-theoretic reasoning is so subtle
here that the latter type of subjects fail to grasp such incentives.
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Figure 3: Comparison of Individual Distributions across Different Signal Pre-
cisions

6.3 Behavioral Models

As we have seen, in some treatments of our experiment subjects under-acquire
information relative to the symmetric Nash equilibrium prediction, e.g., the
case where N = 3, c = 8 and x = 0.7. On the other hand, we often see
that with a single change of a treatment variable we move from under- to
over-acquisition of information as for example in the case where N = 7, c = 8
and x = 0.7. In this section we present several possible explanations for the
observed over- or under-acquisition of information in our experimental data.

6.3.1 Subjects act as decision theorists rather than game theorists

Suppose that subjects under-weight or dismiss completely the strategic in-
teraction that is involved in the collective action voting game. As an extreme
case, let us suppose that subjects perceive the game to be one where N = 1
and so in effect, they are lone decision-makers. If N = 1, then it is rational to
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acquire information at the fixed cost c so long as M(x− 1/2) ≥ c and to not
acquire information otherwise. In our parameterization, we have M = 100.
Thus for our x = 0.7 treatment, it becomes rational to acquire information if
c < 20, while for our x = 1 treatment it is rational to acquire information so
long as c < 50. These cost thresholds are satisfied for all of our treatments,
with the sole exception of the x = .7, c = 25 treatment (that is why we chose
to implement that treatment). In that treatment, both the decision-theoretic
and game-theoretic incentives are perfectly aligned and thus subjects should
never choose to acquire information. Note that while the characterization of
subjects as decision theorists can explain over–acquisition of information in
our x = 0.7 treatments with c < 20 it cannot explain under–acquisition of
information as in the N = 3, x = 0.7 treatments where c = 5 or c = 8.

In an effort to address the extent to which subjects might be ignoring
strategic considerations, we classified each subject based on their information
acquisition decisions. Specifically, we classified each subject according to one
of three distinct types: 1) those who never buy (NB) information in all 25
rounds of the experiment 2) those who switch (S) at least once during the
25 rounds between buying and not buying information, and 3) those who
always buy (AB) information in all 25 rounds. Table 6 shows the proportion
of these three subject types for each treatment condition (N, c, x).

Let us first focus on the x = 0.7, c = 8 treatments, where we observe that
the share of AB-types in the population steadily decreases as we increase
N from 3 to 7 to 13. The game-theoretic equilibrium prediction calls for a
100 percent frequency of AB-types when N=3 and a drop-off to 0 percent
AB-types (and 100 percent NB-types) for the N = 7 and N = 13 treatments.
By contrast, the decision-theoretic prediction is for 100 percent AB-types in
all three of these treatments. The steady but more gradual decline in AB-
types as N is increased as reported in Table 6 suggests that decision costs as
opposed to strategic, group-size considerations alone may be playing a role
in the behavior of some of our AB-type subjects.

Consider next the case where x = 0.7 and N = 7 and c is varied from 5
to 8 to 15. The game-theoretic equilibrium prediction is that subjects should
acquire information on average 66.9 percent of the time when c = 5, but
should never acquire information when c increases to 8 or 15. By contrast,
the decision-theoretic prediction again calls for 100 percent AB-types in all
three of these treatments as c is always less than 20. Table 6reveals that
there is indeed a much larger percentage of AB-types when c = 5 than when
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c = 8 or c = 15, but that the percentage of AB-types remains strictly greater
than 0 in the latter two cases in violation of game-theoretic equilibrium
predictions but consistent with the notion that some subjects may be acting
as decision-theorists.

Similarly, in the case where x = 0.7 and N = 3, we observe a steady
decline in the frequency of AB-types as the cost, c, increases from 5 to 8 to
25, which is again inconsistent with the game-theoretic equilibrium prediction
that there should be 100 percent AB-types when c = 5 or c = 8 and a decline
to 0 percent AB-types when c = 25. As noted earlier in connection with
Table 3, fixing N = 3 and x = .7, there is a large and statistically significant
drop-off in the frequency of information acquisition as we move from c = 8
to c = 25. By contrast, under the same treatment conditions, the increase
in costs from c = 5 to c = 8 results in a statistically insignificant drop
in the frequency of information acquisition. However, inconsistent with the
decision-theoretic explanation, the frequency of AB types is not equal to 100
percent when c = 5 or 8 nor is it equal to 0 when c = 25.

Finally, consider the case where x = 1.0 and c = 8 In this case, the
game–theoretic equilibrium predictions are closer to matching the distribu-
tion of subject types than the decision-theoretic predictions. In particular,
when N = 3 the game-theoretic equilibrium prediction is for 82.5 percent of
subjects to acquire information, while when N = 7 the prediction is for 44.7
percent of subjects to acquire information. The decision-theoretic prediction
is for all subjects to always acquire information in both of these treatments
as c is always less than 50. Table 6 reveals that the frequency of AB-types
falls from 79.7 percent when N = 3 to 42.86 percent when N = 7 instead of
remaining constant at 100 percent as would be consistent with the decision-
theoretic approach.

Summarizing, the evidence on individual behavior suggests that when
x < 1, the player population could be characterized as a mixture of game-
theoretic and decision-theoretic player types; decision-theoretic reasoning can
account for over-acquisition of information in all but one of our treatments
(the one where c = 25), though not under–acquisition of information as is
often observed in our treatments where N = 3. By contrast, when x = 1.0,
the distribution of player types is more closely aligned with game-theoretic
equilibrium predictions as opposed to decision-theoretic predictions. The lat-
ter finding suggests that subjects may compensate for the greater noise in
the imperfect signal (x = .7) treatments by ignoring strategic considerations
and acting more like decision-theorists. Again, we must qualify this conclu-
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sion by noting that it cannot explain under-acquisition of information that
we observe in some of our treatments.

6.3.2 Quantal Response equilibrium

A second possible explanation for why the frequency of information acquisi-
tion is at odds with theoretical predictions is that the experimental environ-
ment in which voters are operating is a noisy one and so the appropriate best
response function is not the theoretical one, but instead a noisy best response
function that conditions on the actual distribution of subject decisions. The
idea of finding equilibria that comprise mutual best responses to the empir-
ical distribution of actual and possibly noisy behavior, as opposed to the
theoretical ideal has been formalized as the concept of a quantal response
equilibrium by McKelvey and Palfrey (1995). In this section we estimate the
quantal response equilibrium predictions for our experimental data and we
compare these with the Nash equilibrium predictions.

In the quantal response equilibrium model, we calculate the information
acquisition choice probabilities as (quantal response) functions of the ex-
pected payoffs. Given the slope λ of the logistic quantal response function,
the information acquisition choice strategy of a subject can be written as:

σ(λ) =
1

1 + exp[−λ{U(σ1)− U(σ0)}]
. (1)

where, as before, σ1 means “acquire information,” while σ0 means “do not
acquire information.” Here, λ is understood to measure the “degree of ratio-
nality”; λ = 0 corresponds to random behavior whereas λ =∞ corresponds
to equilibrium behavior (perfect rationality). We can also specify voting
strategies in a similar way. The likelihood function to maximize is then
proportional to:

L(λ) = σ(λ)σ1 [1− σ(λ)]σ0 (2)

In all instances, we use pooled data from all sessions of a given treatment
in maximizing the above likelihood function. The results of our maximum
likelihood estimation are reported in Table 7.

6.3.3 Risk aversion

A third possible explanation for information acquisition decisions being at
odds with theoretical predictions is that we have assumed that agents are
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risk neutral with respect to uncertain money earnings. This assumption can
be relaxed by allowing agents to be risk averse with respect to uncertain
monetary payoffs. To consider this explanation, we proceed as follows...[I
added Sourav’ note here]

Suppose the probability of being pivotal is q and the probability of getting
the right outcome conditional on NOT being pivotal is p.

Both of these are functions of other voters’ search probabilities.
Now, suppose that the utility function of an individual is u(z), where z

is the amount of money earnings. Let us normalize u(0) = 0 and u(1) = 1.
Denote the signal precision by x > 1

2
.

The following table lists the outcomes for different actions

PIV OTAL wp q NOT PIV OTAL wp 1− q

Acquire :

[
u(1) = 1 wp x
u(0) = 0 wp (1− x)

]
Acquire :

[
u(1) = 1 wp p
u(0) = 0 wp (1− p)

]
Not Acquire :

[
u(1 + c) wp 1

2

u(c) wp 1
2

]
Not Acquire :

[
u(1 + c) wp p
u(c) wp (1− p)

]
Therefore, the payoff from information acquisition is given by

u(A) = qx+ (1− q)p,

while the payoff from not acquiring information is given by

u(NA) = u(1 + c)

[
1

2
q + (1− q)p

]
+ u(c)

[
1

2
q + (1− q)(1− p)

]
Notice that given our normalization, the “shape” of the utility function

only affects u(NA). Suppose we have linear utilities, which, given our nor-
malization, must mean that u(z) = z.

In that case, utility from not acquiring information is

uL(NA) = [u(1) + u(c)]

[
1

2
q + (1− q)p

]
+ u(c)

[
1

2
q + (1− q)(1− p)

]
= u(1)

[
1

2
q + (1− q)p

]
+ u(c)

=

[
1

2
q + (1− q)p

]
+ c
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Next, we find conditions on the shape of the utility function for which
u(NA) is greater than or less than uL(NA).

u(NA) = u(1 + c)

[
1

2
q + (1− q)p

]
+ u(c)

[
1

2
q + (1− q)(1− p)

]
= [u(1 + c)− u(1)− u(c)]

[
1

2
q + (1− q)p

]
+ u(c)

[
1

2
q + (1− q)(1− p)

]
+ [u(1) + u(c)]

[
1

2
q + (1− q)p

]
= [u(1 + c)− u(1)− u(c)]

[
1

2
q + (1− q)p

]
+ u(1)

[
1

2
q + (1− q)p

]
+ u(c)

= [u(1 + c)− u(1)− u(c)]

[
1

2
q + (1− q)p

]
+

[
1

2
q + (1− q)p

]
+ u(c)

= [u(1 + c)− u(1)− u(c)]

[
1

2
q + (1− q)p

]
+ uL(NA) + u(c)− c

Writing 1
2
q + (1− q)p = t, we have the following expression

u(NA)− uL(NA)

= [u(c)− c]− t[u(1) + u(c)− u(1 + c)]

Assuming that u(x) is convex, from our normalization that u(0) = 0 and
u(1) = 1, we have [u(c)− c] > 0 and u(1) + u(c)− u(1 + c) > 0.

Therefore, u(NA) < uL(NA) if and only if

t >
u(c)− c

1 + u(c)− u(1 + c)

In other words, if the utility function is sufficiently more curved at 1 + c
compared to c, the above condition holds. Notice also that t = 1

2
q+ (1− q)p

is the likelihood of getting the right outcome conditional on not acquiring
information. Since q < 1

2
< p, we must have t ∈ (1

2
, p).

If we have u(NA) < uL(NA), in settings where everyone is risk neutral
and equilibrium involves mixing between acquiring and not acquiring infor-
mation, if one individual’s utility function changes to u(NA) from uL(NA),
she will acquire information with a small probability.

Now, what kind of utility functions lead to this being satisfied (or not)?
A priori, it is hard to say. Call the RHS U(c)
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With CARA utility function (suitably normalized): u(x) = 1−e−αx
1−e−α , α > 0,

for any c, U(c|α) is increasing in α. In particular, for any c < 1, there is some
α such that if some subject has CARA utility function with α < α (i.e.,
low enough risk aversion), then U(c|α) < 1

2
, therefore guaranteeing that

t > U(c|α) for all t. Of course, for specific values of c and t, the range of α
for which t > U(c|α) is much larger. For example, if we have an observed
welfare of p = 0.75, t is at least 0.625 (assuming q = 1

2
which is the theoretical

maximum), any α less than 0.9 works for c = 0.05 and any α less than 0.8
works for c = 0.8.

Notice that small deviations from linearity make it more likely for us to
have u(NA)− uL(NA) > 0.

Interesting observation: Fix some c and thus, some value of U(c). An
increase in n may make t go up (which is always the case with observed data
in our experiment since t is increasing in p and decreasing in q). It is now
possible that, for low n, we have t < U(c) - i.e. u(NA) > uL(NA) which will
tend to underacquisition compared to the linear case and for large n we will
have t > U(c) which will lead to overacquisition compared to the linear case.

EQUILIBRIUM ANALYSIS
Suppose the utility of money for all voters is given by u(x). Moreover, we

have u(0) = 0 and u(1) = 1. Assume that there are 2n+ 1 voters
Suppose also that in equilibrium, voters acquire information with proba-

bility σ ∈ [0, 1].
Also, assume that on not acquiring information, voters vote for each

alternative with probability v = 1
2
.

Then, the probability of a random voter voting for the correct alternative
(i.e., R in state ρ or B in state β) is

v = σx+ (1− σ)
1

2

and the probability of voting for the wrong alternative is

1− v = σ(1− x) + (1− σ)
1

2

Then, the probability of a voter being pivotal in a given state (Pr(piv|ρ) =
Pr(piv|β)) is

q(σ) =

(
2n

n

)
[v(1− v)]n
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Probability of obtaining the right outcome conditional on NOT being
pivotal is

p(σ) =
2n∑

r=n+1

(
2n

r

)
[v]r [1− v]2n−r

Therefore, payoff from acquisition is

UA(σ) = qx+ (1− q)p

Payoff fron not acquiring information is

UNA(σ) = u(1 + c)

[
1

2
q + (1− q)p

]
+ u(c)

[
1

2
q + (1− q)(1− p)

]
We now find the equilibrium in the usual way: if there is some σ∗ ∈ [0, 1]

for which UA(σ) = UNA(σ), then σ∗ is an equilibrium. Otherwise, we have
a corner solution.

7 Conclusion

We found rather poor support for the comparative statics predictions of the
rational choice theory of endogenous information acquisition and voting. We
observe that our subjects generally over-invest in costly information, hence
the extent of free-riding is not as large as predicted. Many subjects appear to
be ignoring strategic considerations and acting as lone decision-theorists. If
N = 1, the one should buy information if M(x−1/2) ≥ c. In our setting with
M = 100, if x = 0.7, then one would buy information as long as c ≤ 20, and
if x = 1, as long as c ≤ 50, which is always the case under all of our treatment
conditions. This characterization of subjects (at least some part of them) as
decision theorists can explain over-acquisition of information, but not under-
acquisition of information in the N = 3, x = 0.7 treatments. We found
relatively clear information cost effect. Increasing the cost from c = 5 to
c = 8 to c = 15 shrinks the expected gains from information acquisition and
some subjects (but not enough) are responsive to this change. We suspect
that a quantal response model (noisy best response) can help to rationalize
our findings. The results seem more promising for the theory when x = 1,
where perhaps free-riding incentives are most clear. For example, under
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x = 1, if everyone else acquires information, the probability that one’s vote is
decisive (pivot probability) becomes zero, which must dissuade him strongly
from informed voting.
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x=0.7 N = 3 N = 7 N = 13
σ̂ ŵ σ̂ ŵ σ̂ ŵ
n/a 68 n/a 84

c = 0 n/a 78
n/a 72
n/a 86

Overall n/a 76 n/a 84 n/a
Predicted n/a 78.4 n/a 87.4 n/a 93.8

54.67 62 64.00 76
c = 5 76.00 76 82.57 80

64.00 70 74.57 86
83.33 66 85.71 84

Overall 69.50 68.5 76.71 81.5
Predicted 100 78.4 66.93 77.3 0 50

60.00 68 34.00 58 44.15 70
c = 8 35.33 62 75.14 82 61.69 82

74.00 66 36.00 70 38.77 78
63.33 62 60.29 74 40.62 74

Overall 58.17 64.5 51.36 71 46.31 76
Predicted 100 78.4 0 50 0 50

28.29 66
c = 15 54.00 74

Overall 41.15 70
Predicted 0 50 0 50 0 50

34 54
c = 25 8.67 48

24 52
42 70

Overall 27.17 56
Predicted 0 50 0 50 0 50
* σ̂ = Observed frequency of information acquisition (%).
† ŵ = Observed efficiency (%).

Table 3: Results by Session for x = 0.7
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x=1 N = 3 N = 7
σ̂ ŵ σ̂ ŵ
88.67 100 51.43 92

c = 8 83.33 100 52.86 94
70.67 96 64.57 98
83.33 100 53.71 96

Overall 81.50 99 55.64 95
Predicted 82.46 97.8 44.72 90.2
* σ̂ = Observed frequency of information

acquisition (%).
† ŵ = Observed efficiency (%).

Table 4: Results by Session for x = 1
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x=0.7 N = 3 N = 7 N = 13
σ̂ ŵ σ̂ ŵ σ̂ ŵ

c = 0 n/a 76 n/a 84
1st 13 rds n/a 75 n/a 84.615
2nd 12 rds n/a 77.08 n/a 83.335
Predicted n/a 78.4 n/a 87.4 n/a 93.8
c = 5 69.5 68.5 76.71 81.5
1st 13 rds 71.47 66.35 76.785 77.88
2nd 12 rds 67.36 70.83 76.635 85.42
Predicted 100 78.4 66.93 77.3 0 50
c = 8 58.17 64.5 51.36 71 46.31 76
1st 13 rds 58.97 60.58 52.335 69.23 47.34 78.85
2nd 12 rds 57.29 68.75 50.295 72.92 45.19 72.92
Predicted 100 78.4 0 50 0 50
c = 15 41.15 70
1st 13 rds 39.56 69.23
2nd 12 rds 42.86 70.83
Predicted 0 50 0 50 0 50
c = 25 27.17 56
1st 13 rds 27.565 51.925
2nd 12 rds 26.74 60.42
Predicted 0 50 0 50 0 50
x=1 N = 3 N = 7 N = 13

σ̂ ŵ σ̂ ŵ σ̂ ŵ
c = 8 81.5 99 55.64 95
1st 13 rds 81.73 100 58.38 95.19
2nd 12 rds 81.25 97.92 52.68 94.8
Predicted 82.46 97.8 44.72 90.2 23.59 81
* σ̂ = Observed frequency of information acquisition (%).
† ŵ = Observed efficiency (%).

Table 5: Session Average, Overall, First 13 rounds and Second 12
rounds
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All Rounds First 13 Rounds Last 12 Rounds
Precision Cost Type N=3 N=7 N=13 N=3 N=7 N=13 N=3 N=7 N=13

NB 16.67 10.71 16.67 10.71 25.00 14.29
c = 5 S 25.00 23.22 25.00 23.22 12.50 16.07

AB 58.33 66.07 58.33 66.07 62.50 69.64

NB 16.67 28.57 29.81 16.67 28.57 31.73 29.17 39.29 36.54
x = 0.7 c = 8 S 41.66 32.14 42.31 41.66 32.14 37.50 25.00 17.85 31.73

AB 41.67 39.29 27.88 41.67 39.29 30.77 45.83 42.86 31.73

NB 39.29 50.00 39.29
c = 15 S 35.71 17.86 32.14

AB 25.00 32.14 28.57

NB 45.83 50.00 54.17
c = 25 S 41.67 37.50 29.17

AB 12.50 12.50 16.66

NB 12.50 14.28 12.50 17.86 12.50 25.00
x = 1 c = 8 S 8.33 42.86 8.33 39.28 8.33 30.36

AB 79.17 42.86 79.17 42.86 79.17 44.64

* NB = Subjects who never buy information (%).
† S = Subjects who switch between buying and non-buying (at least once) (%).
AB = Subjects who always buy information (%).

Table 6: Proportions of Different Subject Types

Precision Cost N = 3 N = 7 N = 13
x = .7 c = 5 σ̂ = 0.6943 σ̂ = 0.6693

λ̂ = 9.7000 λ̂ =∞
c = 8 σ̂ = 0.5817 σ̂ = 0.5000 σ̂ = 0.4632

λ̂ = 11.3000 0.0000 λ̂ = 1.7000
c = 15 σ̂ = 0.4130

λ̂ = 1.9000
c = 25 σ̂ = 0.2694

λ̂ = 3.3000
x = 1.0 c = 8 σ̂ = 0.8150 σ̂ = 0.5000

λ̂ = 188.0000 λ̂ = 0.0000

Table 7: Quantal Response Equilibrium: Maximum Likelihood Estimates
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