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Abstract

This paper examines the numerical properties of the nested �xed-point algorithm (NFP)

in the estimation of Berry, Levinsohn, and Pakes�s (1995) random coe¢ cient logit demand

model. We theoretically derive an upper bound on the numerical bias in the NFP estimates

with contraction mappings (NFP/CTR) which, under our assumptions, is sharper than that

derived by Dubé, Fox, and Su (2012). We also show that, compared with NFP/CTR, NFP

using Newton�s method has a smaller bound of the estimate error and converges more often.

We illustrate actual numerical performance of NFP in our Monte Carlo experiments.

1 Introduction

The nested �xed-point approach (NFP) has been widely used for structural estimation in economics.

In empirical industrial organization, for example, Rust (1987) uses NFP to estimate the single-

agent dynamic discrete choice model. Berry, Levinsohn, and Pakes (1995; BLP hereafter) apply

NFP to estimate the random coe¢ cients logit demand model. To estimate structural parameters,

NFP iterates two nested loops: The inner loop numerically solves a �xed-point problem given a

parameter value, and the outer loop optimizes the objective function over a parameter space. Dubé,

Fox, and Su (2012; DFS hereafter) argue that numerical errors from the inner loop propagate into

the objective function, which leads to less convergence or to convergence to a point that is not

a local minimum if a loose stopping criterion is used. As an alternative to NFP, DFS propose a
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mathematical programming with equilibrium constraints (MPEC) approach for the BLP estimation.

There is no nested inner loop in MPEC, and thus it does not su¤er from the error propagation

problem.

This paper examines the numerical properties of NFP in the estimation of BLP�s random

coe¢ cient logit demand model. In particular, we study two versions of NFP. The �rst is BLP�s

nested contraction mapping algorithm, which DFS also study.1 We refer to this algorithm as

NFP/CTR and �nd that the upper bound on the estimate error of NFP/CTR has the same order

of the inner loop tolerance, and thus it is sharper under our assumptions than that derived by

DFS. For MPEC, the numerical error bound is of the same order as the feasibility tolerance. This

implies that NFP/CTR�s numerical error in the parameter estimate is of the same order as MPEC�s

numerical error arising from the feasibility constraints when the inner loop and feasibility tolerances

are of the same order.

Our error bound of NFP/CTR estimates should be interpreted carefully. Unlike in DFS, our

error bound relies on the assumption that an estimate is obtained after an optimization routine

converges. As DFS argue, this assumption often fails when the inner loop tolerance is too loose.

With a loose inner loop tolerance, the outer loop objective function is evaluated inaccurately, and

the outer loop may take a wrong direction toward a local optimum. Our result on a numerical

error bound for an NFP/CTR estimate indicates that when a researcher is lucky enough to �nd

convergence under a not-very-tight inner loop tolerance with a reasonable outer loop tolerance, the

numerical error of the estimate is less problematic than suggested by the numerical error bound

in DFS. The numerical error bound of DFS is larger than ours but may be applied even when

an optimization routine does not report convergence like in their example with a loose inner loop

tolerance. In addition, we have a di¤erent set of technical assumptions from DFS, which leads to

a sharper error bound than that of DFS. We believe that all our assumptions as well as theirs are

satis�ed in most applications of the BLP model.

Our second version of NFP, which we refer to as NFP/NT, uses Newton�s method to solve

the inner �xed-point problem.2 In NFP/NT, we combine contraction mapping iterations and

Netwon�s method, following Rust (1987) to ensure global convergence. The original version of

Newton�s method converges locally only. One way to guarantee global convergence is to start with

contraction mapping iterations and then switch to Newton�s method. A similar implementation

to ours appears in Iskhakov et al. (2015), who estimate the single-agent dynamic discrete choice

model. They show that NFP with Newton�s method is as fast as MPEC.

We argue that NFP/NT has good numerical properties as well. First, the numerical error in the

1We note that their error bound (Theorem 3 in DFS) is an interesting result but is not their main criticism of

loose inner loop tolerances.
2When we refer to both NFP/CTR and NFT/NT, we will simply write NFP.
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parameter estimate of NFP/NT is smaller than that of NFP/CTR. We show that the error bound

of NFP/NT has an order of the square of the inner loop tolerance. Second, due to the quadratic

convergence rate of Newton�s method, only a few more iterations are necessary to reduce the inner

loop error, for example, from 10�6 to 10�12. This property makes it easy to minimize the error

propagation into the outer loop objective function, and the inner loop tolerance does not need to

be loosened. With a tight tolerance, an optimization routine is more likely to converge to a local

optimum.

We illustrate the actual numerical performance of NFP in our Monte Carlo experiments. We

vary the level of inner loop tolerance but use a tight outer loop tolerance, 10�6, to observe the

proportion of convergence and the accuracy of the estimates. As in DFS, we �nd many cases of

nonconvergence of NFP/CTR when using a loose inner loop tolerance. We also study the numerical

error of the NFP/CTR estimate conditional on convergence. The experiment shows that, when

NFP/CTR converges, the algorithm �nds the estimates properly even under a loose inner loop

tolerance. We show that NFP/NT converges more often and achieves a tighter inner loop tolerance

with a few more iterations, as expected.

Our implementation of NFP/NT is not the �rst to use Newton�s method for the inversion of

the market share equations in the BLP estimation. Patel (2012) proposes Newton�s method as a

supplement to contraction mapping when contraction mapping does not perform e¢ ciently. Rey-

naerts, Varadhan, and Nash (2012) propose Newton�s method as an alternative to the contraction

mapping iterations. Houde (2012) proposes combining a quasi-Newton method with the contraction

mapping iterations. However, none of these studies discusses the e¤ect of the change in tolerance

on the numerical error in the estimate.

We organize the rest of this paper as follows. In Section 2, we discuss a random coe¢ cients

logit demand model using aggregate data and present the estimation procedures, NFP/CTR and

NFP/NT. Section 3 provides a theoretical analysis of the numerical error in the estimate computed

with NFP. In Section 4, we present the Monte Carlo experiments. Section 5 concludes. Finally, we

provide proofs in Appendix A and discuss technical details of our implementation of NFP/NT in

Appendix B.

2 Model and Estimation

In this section, we brie�y explain the random coe¢ cient logit demand model using aggregate data.

Then, we discuss NFP/CTR and NFP/NT estimation procedures.
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2.1 Random Coe¢ cients Logit Demand Model

We assume a set of independent markets, t = 1; :::; T . For simplicity, we assume each market to

have the same set of products, j = 1; :::; J . The utility of consumer i from consuming product j in

market t is

Uijt = Xjt�i + �jt + "ijt;

where Xjt is a vector of observed product characteristics, �i is a vector of consumer i�s preference

for observed product characteristics, �jt is a product characteristic or a demand shock that is

unobserved by the econometrician, and "ijt is an idiosyncratic shock. We also denote the option

not to purchase as j = 0: The utility of consumer i from not purchasing in market t is Ui0t = "i0t.

Following the standard random coe¢ cient logit demand model, we further assume that the vector

of random coe¢ cients �i is drawn independently from the distribution F (�i; �) ; and "ijt follows

the Type I extreme value distribution.

Under the assumptions, the market share function of product j in market t is

sj (Xt; �t; �) =

Z
exp

�
Xjt�i + �jt

�
1 +

PJ
j0=1 exp

�
Xj0t�i + �j0t

�dF (�i; �) ; (1)

where Xt � (X 0
1t; :::; X

0
Jt)

0 and �t � (�1t; :::; �Jt)
0. In practice, we approximate the integral using

simulation; that is, we generate ns draws of �i and then evaluate (1) by calculating

1

ns

nsX
i=1

exp
�
Xjt�i + �jt

�
1 +

PJ
j0=1 exp

�
Xj0t�i + �j0t

� : (2)

For simplicity, we write sj (�t; �) instead of sj (Xt; �t; �). We de�ne s (�t; �) � (s1 (�t; �) ; :::; sJ (�t; �))0

as the predicted market share functions in market t; and St � (S1t; :::; SJt)0 ; where Sjt is the ob-
served market share of product j in market t:

2.2 Estimation Procedures

Prices are likely to be correlated with the unobserved product characteristics �jt. To address the

endogeneity, BLP propose the generalized method of moments (GMM) estimation with the moment

conditions

E
�
�jtjzjt

�
= 0;

where zjt is a vector of instrumental variables. The moment conditions are often implemented as

E
�
�jth (zjt)

�
= 0; where h (�) is a vector-valued function. To form the moment, BLP invert the
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market share equations St = s (�t; �) for a given �; and obtain the solution, denoted as �t (�) �
(�1t (�) ; :::; �Jt (�))

0. The sample moment is

gT (� (�)) =
1

T

TX
t=1

g (�t (�)) =
1

T

TX
t=1

JX
j=1

�jt (�)h (zjt) ;

where � (�) �
�
�1 (�)

0 ; :::; �T (�)
0�0 and should be close to 0 when T is large.

We can write the BLP GMM problem as follows:

min
�2�

Q (� (�)) = min
�2�

gT (� (�))
0WgT (� (�)) ;

where W is a weight matrix. The BLP estimator �� is the minimizer of the BLP GMM problem in

the �nite sample.

BLP propose the following NFP approach: invert the market share equations for a given � to

obtain �t (�) ; t = 1; :::; T in the inner loop, and search for � that minimizes the GMM objective

function Q (� (�)) in the outer loop. To obtain �t (�) in the inner loop, BLP suggest the contraction

mapping iterations:

�hCTR = �
h�1
CTR + lnSt � ln s

�
�h�1CTR; �

�
; h = 1; 2; � � �

such that 


�h+1CTR � �
h
CTR




 � L (�)


�hCTR � �h�1CTR




 ; 8�hCTR; h = 1; 2; � � � (3)

with a Lipschitz constant L (�) 2 [0; 1). They show that iterative applications of the contraction
mapping converge to �t (�). This is what we refer to as NFP/CTR.

As an alternative, we propose NFP/NT, which starts with contraction mapping iterations and

switches to Newton�s method to ensure global convergence. Newton�s method in NFP/NT begins

with an initial guess �0NT obtained by the contraction mapping, and the subsequent iterate is

computed using the iteration rule:

�hNT = �
h�1
NT +

h
r�s

�
�h�1NT ; �

�i�1 h
St � s

�
�h�1NT ; �

�i
; h = 1; 2; � � � (4)

where r�s
�
�h�1NT ; �

�
is the matrix of �rst partial derivatives of s (�; �) with respect to � at the

iterate �h�1NT . The Newton iterate converges if s (�; �) is continuously di¤erentiable with respect to

�, r�s (�; �) is invertible, and the initial guess is su¢ ciently close to a solution �t (�).

3 Bounds on Errors in the Estimate

In this section, we derive upper bounds on the errors in the BLP estimate when it is computed

with NFP/CTR and NFP/NT. We follow the same notations as in DFS. For notational simplicity,

we omit the market index t.
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When we solve for � (�) in the inner loop, the exact value of the solution is not available. Instead,

we impose a stopping rule of the inner loop, which requires the change of two successive iterates to

be less than a given inner loop tolerance, �in:


�h � �h�1


 � �in: (5)

This rule is commonly used to check convergence in the inner loop.

Following DFS, let � (�; �in) be the �rst iterate �h satisfying the stopping rule (5). When the

contraction mapping iterations are applied, we write �CTR (�; �in). Similarly, we write �NT (�; �in)

for Newton�s method.

We are ready to study an e¤ect of the inner loop and outer loop tolerances on the estimate errors

for NFP. An optimization routine stops and reports � if the norm of the gradient of the objective

function is less than the outer loop tolerance, �out. Computing the gradient of the objective function,

r�Q (� (�)), is not free of numerical error from the inner loop. To deal with this explicitly, de�ne,

for any � and � (even when � 6= � (�)),

� (�; �) �
"
�
�
@s (�; �)

@�

��1 @s (�; �)
@�

#0
@Q (�)

@�
:

We can show that r�Q (� (�)) = � (� (�) ; �) using the implicit function theorem. However, the

error-free value of � (�) (= � (�; 0)) is infeasible in most applications, and so is r�Q (� (�)). Thus,
in practice, the approximated value, � (� (�; �in) ; �), is used instead of the true value r�Q (� (�))
and is understood as an analytical gradient of the objective function. Then, the optimizer reports

� if

k� (� (�; �in) ; �)k � �out: (6)

Let e� (�in; �out) be a parameter � satisfying (6). As noted previously, e�CTR (�in; �out) ande�NT (�in; �out) denote the computed estimates from the contraction mapping iterations and New-

ton�s method, respectively. Recall that �� is the true value of the BLP estimate in the �nite sample,

and �� = e� (0; 0).
In what follows, we often suppress (�in; �out) in e� (�in; �out), and just write e�.

Theorem 1. Suppose that (a) �� is an interior solution, (b) r��0Q (� (�)) j�=�� is nonsingular, and
(c) @�(�;�)

@�0
j
(�;�)=(�(e�);e�) is bounded. Then,


e� � ��


 � O �


��� �e�; �in� ;e��


�+O �


� �e�; �in�� � �e��


� : (7)
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This theorem states a property of the estimate errors of both NFP/CTR and NFP/NT. The

�rst term in the right-hand side (RHS) of (7) is due to the errors in the evaluation of the gradient

and the second is due to the inner loop error. Because



��� �e�; �in� ;e��


 � �out, it is possible

to replace the �rst term with O (�out). The second term depends on how the inner loop is solved.

Subsequently, we investigate the e¤ect of the inner loop errors on the estimates for NFP/CTR and

NFP/NT.

3.1 Numerical Errors in NFP/CTR

DFS begin their analysis of the error propagation of NFP/CTR by observing the following bound

on the error from (5):


�hCTR � � (�)


 � L (�)

1� L (�)




�hCTR � �h�1CTR




 � L (�)

1� L (�)�in: (8)

That is, k�CTR (�; �in)� � (�)k �
L(�)
1�L(�)�in:

DFS set �out = 0 when de�ning b� (�in) � e�CTR (�in; 0). We use the same de�nition in the
following corollary.

Corollary 2. Suppose that the assumptions of Theorem 1 hold. Then,




b� (�in)� ��


 � O
0@ L

�b� (�in)�
1� L

�b� (�in)��in
1A : (9)

Theorem 3 in DFS states that, under mild conditions,

O

�


b� (�in)� ��


2� � ���Q��CTR �b� (�in) ; �in���Q (� (��; 0))���+O
0@ L

�b� (�in)�
1� L

�b� (�in)��in
1A : (10)

The �rst term in the RHS of (10) is the bias in the objective function values, and the second is

the numerical bias in the demand shocks, �. In contrast, (9) has only the numerical bias in the

demand shocks. Our error bound does not have the bias in the objective function values because

we apply the Taylor expansion on r�Q (� (�)) which vanishes at �� due to the �rst order condition.
But DFS do so on Q (� (�)) which does not necessarily vanish. It is worth noting that Corollary 2,

unlike (10), relies on the assumption that the outer loop is solved exactly and (10) may be applied

even when an optimization routine does not report convergence.

A more important di¤erence lies in an order of magnitude of the error bounds. The error bound

in (9) has the same order as the inner loop tolerance when the contraction mapping iterations

are applied. This is sharper than that in (10), which has an order of the square-root of the inner
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loop tolerance. Furthermore, the error in the estimate computed by MPEC has the same order as

the optimality and feasibility tolerances (DFS, p. 2242 and references therein). Therefore, if the

tolerances of NFP/CTR are set to the same levels as those of MPEC, the upper bounds on the

estimate errors for both approaches are of the same order.

Why do orders of error bounds di¤er? DFS argue that Q (� (�; �in)) is not di¤erentiable with

respect to �in, and conjecture that � (�; �in) and Q (� (�; �in)) are not di¤erentiable with respect to

� for �in > 0, even though the denoted di¤erentiability can induce a sharper bound, as they discuss

(see also Theorem 2 in Ackerberg, Geweke, and Hahn (2009)).3 Taking this nondi¤erentiability

into account, they approximate the objective function Q (� (�)) with the Taylor expansion. In one

part of their proof (Theorem 3 in DFS), they derive

Q
�
�
�b� (�in) ; 0���Q (� (��; 0))

= [r�Q (� (��))]0
�b� (�in)� ���+O�


b� (�in)� ��


2� :

Then, because r�Q (� (��)) = 0, the term involving
�b� (�in)� ��� vanishes, and the error bound is

expressed in terms of



b� (�in)� ��


2. They assume di¤erentiability of Q (� (�)) with respect to �,

which is a reasonable assumption.

We agree with DFS on the aforementioned nondi¤erentiability, but it is also reasonable to

assume that the gradient of the objective function, r�Q (� (�)), is di¤erentiable with respect to �.4

Then, applying the Taylor approximation to the gradient, we obtain

r�Q
�
�
�b� (�in)���r�Q (� (��))

= [r��0Q (� (��))]0
�b� (�in)� ���+O�


b� (�in)� ��


2� :

The second-order condition of the GMM minimization problem is guaranteed by nonsingularity of

r��0Q (� (��)) ; which is often assumed. Then, the term involving
�b� (�in)� ��� does not vanish,

and our error bound can be expressed in terms of
�b� (�in)� ���, unlike in DFS. Thus, we can

obtain a sharper error bound. See Appendix A for a complete proof.

It is worth noting that the theorems in DFS are not incorrect. We just have di¤erent sets

of assumptions and theorems. However, we believe that all our assumptions (as well as their

assumptions) are satis�ed in most applications. Assumption (a) in Theorem 1 is made implicitly

in DFS. Assumption (b) is common. Indeed, r��0Q (� (�)) is often assumed to be nonsingular at
3Kim and Park (2010) also assume the di¤erentiability and �nd that the error bound in the estimate has the same

order as the inner loop tolerance in large samples. We (and DFS) study small sample errors.
4DFS also assume this di¤erentiability in the proof of Theorem 2.
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the true parameter value of � to guarantee asymptotic normality of the estimator (Newey and

McFadden 1994). In Assumption (c), we impose a boundedness condition on @�(�;�)
@�0

; while DFS

impose a boundedness condition on @Q
@�0
. We take into account that (6) is a practical stopping

criterion, where � (� (�; �in) ; �) approximates r�Q (� (�)) and � (�; �) is di¤erentiable with respect
to � given �. We believe that � (�; �) is di¤erentiable in almost all settings. This di¤erentiability

leads to a sharper error bound than that of DFS.

3.2 Numerical Errors in NFP/NT

In this subsection, we discuss an error bound for Newton�s method. To derive a numerical property

of NFP/NT, we adopt the following assumptions to invoke a version of the Kantorovich theorem.

Let D � RJ be an open convex set and kAk denote the matrix norm for a matrix A.

Assumption 1. Given �, (i) s (�; �) is di¤erentiable with respect to �, (ii) r�s (�; �) j�=�0NT is

invertible, (iii) s
�
�0NT ; �

�
6= S, (iv)





�r�s (�; �) j�=�0NT ��1 �r�s (�; �) j�=�0 �r�s (�; �) j�=�00�




 �

�


�0 � �00

 for all �0; �00 2 D, (v) � � �� < 1

2 for � �




�r�s (�; �) j�=�0NT ��1 s ��0NT ; ��





, and (vi)�
� 2 RJ :



�1NT � �

 � �1�p1� 2�1 +
p
1� 2�

�
� D:

From the de�nition of s (�; �), Assumption 1(i) is satis�ed. Lee and Seo (2015, Lemma 1) show

that Assumption 1(ii) holds for any � and initial guess �0NT . If Assumption 1(iii) were not true, the

initial guess would be the solution. The remaining conditions are technical assumptions to deliver

existence of the solution and convergence of the Newton iterates.

Lemma 3. Suppose that Assumption 1 holds. Then,

k�NT (�; �in)� � (�)k �
� (�)p
1� 2� (�)

�2in: (11)

Lemma 3 indicates that the error bound of the numerical solution �NT (�; �in) has an order of

�2in. This is smaller than that of the contraction mapping iterations, O (�in). This can be easily

checked by comparing (3) with


�h+1NT � �
h
NT




 � �

2
p
1� 2�




�hNT � �h�1NT




2 , (12)

where �
2
p
1�2� is not too large, which can be deduced from Yamamoto (1986). This implies that

Newton�s method converges quadratically to a local solution, whereas contraction mapping itera-

tions converge linearly.
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Moreover, we can achieve a tighter inner loop error with only a few more iterations, which

makes the error propagation even smaller. Let �hNT be the �rst iterate satisfying the stopping rule

(5), given the inner loop tolerance, �in. Then, by (12), �h+1NT achieves the error less than �
2
p
1�2��

2
in.

Because �
2
p
1�2� is not expected to be very large in most applications, one more iteration can make

the error much smaller. Roughly speaking, when �hNT achieves the error of 10
�6, �h+1NT or �h+2NT will

achieve the error less than 10�12.

Next, consider an error bound of the estimate computed using Newton�s method. We de�neb�NT (�in) � e�NT (�in; 0).
Corollary 4. Suppose that the assumptions of Theorem 1 and Assumption 1 hold. Then,




b�NT (�in)� ��


 � O
0BB@ �

�b�NT (�in)�r
1� 2�

�b�NT (�in)��
2
in

1CCA .
Corollary 4 provides a smaller upper bound of the estimate error for NFP/NT than NFP/CTR

and is easily obtained when the second term of the RHS of (7) is replaced with (11).

4 Monte Carlo Simulation

In the Monte Carlo simulation, we implement three approaches: MPEC, NFP/CTR, and NFP/NT.

We generate synthetic data sets under the same setting used by DFS (we do not repeat their settings

here for compactness).

We ran all experiments on a computer with a CPU Intel Xeon processor E3 1270 v2, 16GB

of RAM, Windows 7 64 bit, MATLAB R2012a, and TOMLAB 7.9 equipped with KNITRO 8.0.

We use the codes that DFS provide in Econometrica after some modi�cations. We use the interior

point algorithm (for the outer loop) with algorithm option ALG=1 in KNITRO 8.0. We provide

NFP with the analytic Jacobian/gradient and Hessian. We use 10�6 for the outer loop (optimality)

tolerance.

For NFP/NT, we use a combination of contraction mapping and Newton iterations because

Newton�s method does not converge globally but contraction mapping iterations do. Our approach

is similar to Rust�s (1987) strategy in that the inner loop begins with the contraction mapping

iterations and switches to Newton�s method after the contraction mapping converges under a loose

tolerance. However, the way we deal with numerical instability is di¤erent from Rust (2000).5

5Our theoretical results on convergence rate of numerical errors still apply to our implemention of modi�ed

Newton�s method. Recall that we assume convergence. Conditional on convergence, the last several guesses are close
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Table 1: Monte Carlo Results Varying the Inner Loop Tolerance

Inner loop Approach Runs CPU time Major Func. Grad/Hess. CTR. NT.

tolerance conv. (seconds) iter. eval. eval. iter. iter.

10�3 NFP/CTR 14% 92.9 26 114 52 530

NFP/NT 7% 91.6 26 88 54 118 32

10�6 NFP/CTR 16% 47.1 11 65 24 700

NFP/NT 80% 37.1 10 26 23 53 42

10�9 NFP/CTR 60% 46.9 10 31 22 991

NFP/NT 100% 33.1 9 13 21 23 48

10�12 NFP/CTR 99% 45.3 9 14 21 1,147

NFP/NT 100% 33.2 9 13 21 36 53

Notes: We generate 20 data sets for each level of inner loop tolerance with E
�
�0i
�
= 2, T = 50, J = 25

and ns = 1; 000. We use �ve starting points in the estimation for each data set. The reported means are

over 100 runs. The analytic Jacobian/gradient and the Hessian are provided to NFP and MPEC. Major

iter. is the number of iterations in the outer loop. Func. eval. is the number of function evaluations in the

outer loop. Grad/Hess. eval. is the number of gradient and Hessian evaluations in the outer loop. CTR.

iter. is the number of contraction mapping iterations in the inner loop. NT. iter. is the number of Newton

iterations in the inner loop.

There are issues with the numerical instability of NFP/NT. For example, Newton�s method

does not perform well if the initial guess is not close enough to the solution, or the derivative of

s (�; �) with respect to � in (4) may be numerically ill-posed, in which case an inaccurate Newton

step may be obtained. We discuss how we handle these problems in detail in Appendix B.6

4.1 Results of Monte Carlo Experiments

In this subsection, we run a Monte Carlo experiment using synthetic data sets to examine how the

level of inner loop tolerance a¤ects convergence and numerical accuracy. We report the results in

Tables 1 and 2.

We report the rate of runs that converged for each method in Table 1. The third column

in the table shows that NFP/CTR does not converge in many cases for the loose tolerances of

to the solution and by the local convergence property of Newton�s method, the original Netwon steps work well on

these guesses. Our modi�cations come into play only if the original Newton step fails to �nd a reasonable direction.

Thus when the inner loop converges, the termination condition of the original Newton method is satis�ed.
6As Iskhakov et al. (2015) discuss, if a researcher uses MPEC (e.g., KNITRO) instead of NFP, an e¤ort to

customize the programming code may be reduced or avoided.
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10�3 through 10�9; as DFS also show. In particular, for 10�3, only 14 runs out of 100 converged.

However, for 10�12, the algorithm converges in almost all runs. NFP/NT converges better than

NFP/CTR under the same level of inner loop tolerance, except 10�3. NFP/NT converges 80% for

a tolerance of 10�6 and 100% for tighter tolerances.

We also report the numbers of iterations in the outer loop and in the inner loop in Table

1. For both NFP/NT and NFP/CTR, as the inner loop tolerance gets looser, the numbers of

iterations in the outer loops (i.e., major iterations, function evaluations, and gradient and Hessian

evaluations) increase, but the numbers of iterations in the inner loop (i.e., contraction mapping

iterations and Newton iterations) decrease. This implies that a large inner loop error propagates

into the outer loop and thus prevents the outer loop from converging, resulting in more iterations

in the outer loop, which DFS also point out. For the inner loop tolerances of 10�12, NFP/NT and

NFP/CTR have almost the same numbers of iterations in the outer loop, but there is a drastic

di¤erence in the numbers of iterations in the inner loop. For example, with �in = 10�12; both

NFP/NT and NFP/CTR have, on average, 9 major iterations in the outer loop, but NFP/NT

has 89 iterations (36 contraction mapping iterations and 53 Newton�s iterations) in the inner loop

while NFP/CTR has 1; 147 contraction mapping iterations. The small number of iterations in

the inner loop of NFP/NT is the main driver for speeding up the estimation procedure as in

Iskhakov et al. (2015). Furthermore, as we tighten the inner loop tolerance from 10�9 to 10�12;

the total number of iterations in the inner loop until the outer loop converges increases by 18

(13 contraction mapping iterations and 5 Newton�s iterations) for NFP/NT, while the number of

contraction mapping iterations increases by 156 for NFP/CTR. Because the objective function is

evaluated 13 times until convergence, NFP/NT needs only one or two more inner loop iterations

for each objective function evaluation to achieve a tighter inner loop tolerance 10�12 from 10�9.

This is consistent with the quadratic convergence rate of Newton�s method.

Next, we measure the numerical accuracy of NFP. For this, we need the theoretically exact

estimate in the �nite sample. Because the numerical error-free solution of the BLP GMM problem

is not available, we assume that the MPEC estimates are the exact estimates. The optimality and

feasibility tolerances for MPEC are set to a very tight level, 10�10, to obtain an estimate as accurate

as possible. DFS use 10�6 in their experiments. To simplify an order of magnitude of discrepancy,

we take the logarithm (base 10) of the absolute deviations of the NFP estimates from the MPEC

estimates.

Table 2 reports the mean and maximum of the log absolute deviations for each level of inner

loop tolerance. Both the NFP and the MPEC estimates are the minimizers among the local

minima for each of 20 data sets.7 We �nd that for all data sets with convergence reported, the

7There is one case in which NFP and MPEC converge to di¤erent local minimizers, which we report as not

12



Table 2: Log deviation of NFP SD estimates from MPEC estimates

Inner loop Approach Datasets Log dev. of estimates from MPEC

tolerance conv. True values: 0.7071 0.7071 0.7071 0.7071 0.4472 All

10�3 NFP/CTR 30% Avg -9.34 -7.53 -7.40 -7.86 -7.35 -7.90

Max -5.94 -6.76 -7.09 -6.96 -6.97 -5.94

NFP/NT 20% Avg -13.24 -8.16 -7.56 -7.89 -7.34 -8.84

Max -6.47 -7.38 -7.26 -7.55 -7.04 -6.47

10�6 NFP/CTR 40% Avg -11.29 -8.22 -8.09 -8.62 -7.93 -8.83

Max -7.06 -7.39 -7.58 -7.88 -7.57 -7.06

NFP/NT 100% Avg -8.46 -9.05 -8.75 -9.01 -8.57 -8.77

Max -6.18 -7.54 -7.96 -7.54 -7.34 -6.18

10�9 NFP/CTR 85% Avg -8.85 -8.72 -8.62 -9.13 -8.79 -8.82

Max -6.92 -7.87 -8.12 -8.10 -8.09 -6.92

NFP/NT 100% Avg -9.28 -9.39 -9.14 -9.72 -9.01 -9.31

Max -6.47 -7.87 -8.19 -7.81 -8.37 -6.47

10�12 NFP/CTR 100% Avg -9.37 -9.63 -9.27 -9.81 -9.08 -9.43

Max -7.92 -8.45 -8.60 -8.43 -8.38 -7.92

NFP/NT 100% Avg -9.55 -9.79 -9.32 -9.87 -9.10 -9.52

Max -7.20 -8.48 -8.52 -8.70 -8.37 -7.20
Notes: For each tolerance level, there are 20 data sets as described in Table 1. The local minimum with the

lowest objective value is determined to be the global minimum for each data set. Absolute deviations

between the estimates of NFP and MPEC are calculated, and the log with base 10 of the deviation is

shown.
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absolute deviations between the estimates of NFP/CTR and MPEC are, on average, less than the

optimality tolerance, 10�6. Furthermore, the maximum of the log deviations ranges from �5:94 to
�7:92. Even for �in = 10�3; the maximum log deviation is �5:94, which is small. According to
Theorem 1, the upper bound of the deviation of NFP/CTR has an order of 10�3 when �in = 10�3.

We conjecture that there might exist a sharper upper bound than what Theorem 1 suggests or that

actual deviations do not always achieve the upper bound.

It is worth comparing Table 2 with Tables I and II in DFS. First, the purpose of the latter

tables is not to illustrate their error bound derived in their Theorem 3, but instead to illustrate

consequences of failure to �nd local optima of the objective function due to a loose inner loop

tolerance. Our purpose of the table is to illustrate the error bound of the estimate on convergence.

Second, the numbers in the tables may appear inconsistent, in particular for NFP/CTR with a

loose inner loop tolerance. For example, the fraction of convergence in our table is 30% for the

tolerance of 10�3; while that in Tables I and II in DFS is 0. The maximum absolute deviation for

a tolerance of 10�3 is small in our table, whereas the di¤erence (in the mean own-price elasticities)

between loose (10�4) and tight (10�14) inner loop tolerances is large in their tables. One reason for

these di¤erences is that we supply the analytic gradient of the objective function in our experiment,

and DFS do not in Table I. Because a numerical gradient generates an additional error, it explains

the di¤erence in the fractions of convergence. However, in Table II, DFS apply analytic derivatives

but do not observe convergence. DFS use the pseudo-real cereal data set from Nevo (2000), which

may be harder to optimize with a loose inner loop tolerance than the Monte Carlo data set that

we use. Another reason for the di¤erence is that we use the global minimum (i.e., the minimum

among the local minima from the �ve starting points) for each data set, and they use all results

from all the starting points, including the ones that did not converge.

As we discuss in Section 3, our analysis of the error bound in Corollary 2 assumes convergence.

Tables 1 and 2 in DFS show that a loose inner loop tolerance of NFP/CTR sacri�ces conver-

gence. However, when convergence is achieved under a tight outer loop tolerance such as 10�6, the

NFP/CTR deviations from MPEC are very small even at the loose inner loop tolerances. Thus, it

seems that the level of inner loop tolerance signi�cantly a¤ects convergence rather than accuracy

of the estimate. DFS do not investigate the combination of a tight outer loop tolerance, a loose

inner loop tolerance, and the optimization routine reporting convergence simply because this never

happens in their examples in Tables I and II.

Corollary 4 predicts that NFP/NT produces smaller estimate errors, but Table 2 shows that the

estimate errors of NFP/NT seem close to those of NFP/CTR. A potential reason may be related

to an outer loop error because an outer loop error becomes dominant as an inner loop error gets

convergent.
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smaller. Thus, the di¤erent inner loop errors seem to make no noticeable di¤erence between the

estimates of NFP/NT and NFP/CTR.

5 Conclusion

In this article, we study the numerical performance of NFP/CTR and NFP/NT in BLP�s random

coe¢ cients logit demand model. We show the theoretical result that the upper bound on the

numerical error in the estimate of NFP/CTR is sharper than that proposed by DFS under our

assumptions. In an experiment with synthetic data, we demonstrate that NFP/CTR achieves

reasonably accurate estimates on convergence even with a loose inner loop tolerance if a tight outer

loop tolerance is applied. This implies that the error from the inner loop does not severely a¤ect

numerical accuracy of the estimate. However, a loose inner loop tolerance sacri�ces convergence of

NFP/CTR. As an alternative, we argue that NFP/NT can achieve a very tight inner loop tolerance

rather easily. Therefore, NFP/NT performs well in numerical aspects such as convergence and

accuracy.

A Appendix: Proofs

Proof of Theorem 1: For simple notations, let e� = e� (�in; �out) and write @�(�;�)
@�0

j(�(e�);e�) instead
of @�(�;�)

@�0
j
(�;�)=(�(e�);e�), and similarly for other derivatives. Let � = (�1; :::; �K)0 and, for k = 1; :::;K,

�k (�; �) be the k-th component of � (�; �).

For any k = 1; :::;K, compute

�k

�
�
�e�; �in� ;e��

= �k

�
�
�e�; �in� ;e��� �k �� �e�� ;e��+ �k �� �e�� ;e��� �k (� (��) ; ��)

= �k

�
�
�e�; �in� ;e��� �k �� �e�� ;e��+ dQ (� (�))

d�k
j
�=e� � dQ (� (�))d�k

j�=��

=

�
@�k (�; �)

@�
j
(�;�)=(�(e�);e�)

�0 h
�
�e�; �in�� � �e��i+O�


� �e�; �in�� � �e��


2�

+

�
d2Q (� (�))

d�d�k
j�=��

�0 he� � ��i+O�


e� � ��


2� :
The �rst and second equalities follow because �k (� (��) ; ��) =

dQ(�(�))
d�k

j�=�� = 0. Stacking for all
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j = 1; :::; J and rearranging the terms, we obtain

[r��0Q (� (�)) j�=�� ]
he� � ��i+O�


e� � ��


2� 1K

= �
�
�
�e�; �in� ;e��� �@� (�; �)

@�0
j
(�;�)=(�(e�);e�)

� h
�
�e�; �in�� � �e��i

+O

�


� �e�; �in�� � �e��


2� 1K ;
where 1K is the K-dimensional column vector of 1�s. Since r��0Q (� (�)) j�=�� is nonsingular,�e� � ���+O�


e� � ��


2� 1K

= [r��0Q (� (�)) j�=�� ]�1 �
�
�
�e�; �in� ;e��

� [r��0Q (� (�)) j�=�� ]�1
�
@� (�; �)

@�0
j
(�;�)=(�(e�);e�)

� h
�
�e�; �in�� � �e��i

+O

�


� �e�; �in�� � �e��


2� 1K :
Then, since @�(�;�)

@�0
j
(�;�)=(�(e�);e�) is bounded,


e� � ��




�



[r��0Q (� (�)) j�=�� ]�1





��� �e�; �in� ;e��



+



[r��0Q (� (�)) j�=�� ]�1






@� (�; �)@�0

j
(�;�)=(�(e�);e�)








� �e�; �in�� � �e��



+O

�


� �e�; �in�� � �e��


2�
� O

�


��� �e�; �in� ;e��


�+O �


� �e�; �in�� � �e��


� :
Here, O

�


e� � ��


2� and O
�


� �e�; �in�� � �e��


2� are ignored because there are lower order

terms. �

Proof of Corollaries 2 and 4: Let �out = 0 in Theorem 1. Then,

�
�
�
�e�; �in� ;e�� = 0:

Also by (8) and (11), the required properties are derived. �
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Proof of Lemma 3: We apply Yamamoto (1986, Lemma 2.4 and Corollary 3.1.1). The prerequi-
sites of the lemma and the corollary are satis�ed by Assumption 1. Thus, we deduce


�hNT � � (�)


 � 2




�h+1NT � �
h
NT




 and


�h+1NT � �
h
NT




 � �

2
p
1� 2�




�hNT � �h�1NT




2 .
Let h be the �rst that satis�es (5). Then,

k�NT (�; �in)� � (�)k � 2



�h+1NT � �

h
NT




 � �p
1� 2�




�hNT � �h�1NT




2
� �p

1� 2��
2
in:

Observe that 1 � 2� > 0 and �p
1�2� is bounded (in fact, a constant) when �in changes. This

completes the proof. �

B Appendix: Additional Techniques for Newton�s Method

When we apply Newton�s method for the inner �xed-point problems, computations may be unstable

under some parameter values. As is known, numerically ill-posed equations may produce inaccurate

solutions. We explain the techniques that we use to alleviate the numerical instability.

We introduce some notations. We omit the market index t assuming that there is only one

market. We concentrate out the linear parameter as Nevo (2000) suggests. Then, the equation we

need to solve in the inner loop is

Sj =
1

ns

nsX
i=1

exp (�j) � exp
�PK

k=1 x
k
j�kv

k
i

�
1 +

PJ
j0=1 exp

�
�j0
�
� exp

�PK
k=1 x

k
j0�kv

k
i

� � sj (�;�) , for j = 1; 2; � � � ; J:
Here, Sj and sj (�;�) are the observed market share and the predicted market share function of

product j, respectively. The variable Xjt =
�
x1jt; :::; x

K
jt

�
is a K-dimensional vector containing the

product characteristics, and �i = (�i1; :::; �iK) is assumed to be of the form �ik = �k + �kvik with

vik � N (0; 1). Only � = (�1; :::; �K) is to be estimated in the concentrated GMM problem, and �k
will be estimated later. For each product j, Xj�i can be expressed by the sum of its mean utility

�j =
PK
k=1 x

k
j�k and the individual i�s utility

PK
k=1 x

k
j�kv

k
i deviated from the mean utility. For

each given �, we need to solve for � = (�1; :::; �J).

1. Adjust the scale of the unknowns to be solved: Instead of solving for � directly, we solve for

! = (!1; :::; !J) where !j =
exp(�j)
�j

; j = 1; 2; � � � ; J given some constant vector � = (�1; � � � ; �J).
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The equation is then,

Sj =
1

ns

nsX
i=1

!j � exp
�PK

k=1 x
k
j�kv

k
i

�
� �j

1 +
PJ
j0=1 !j0 � exp

�PK
k=1 x

k
j0�kv

k
i

�
� �j0

� esj (!;�) ; j = 1; 2; � � � ; J:

After solving for !, it is easy to obtain �. In our simulation, we choose �j = Sj for each j = 1; :::; J .

Then, even for a very small value of Sj , such as around 10�9, !j is not very small and we expect

!j and !j0 to be of a similar magnitude, unlike exp (�j) and exp
�
�j0
�
.

2. Adjust the scale of the matrix r!es (�) if its inversion is ill-posed: The Newton step �! is
computed as follows:

�! = [r!es (�)]�1 [S � es (�)] ;
where S = (S1; � � � ; SJ), es (�) = (es1 (�) ; � � � ; esJ (�)) and r!es (�) is the matrix of the �rst partial
derivatives of es (�) with respect to !: If elements of r!es (�) are badly scaled, the computation may
be very inaccurate. To handle the bad scale problem, we use the identity

[r!es (�)]�1 [S � es (�)] = B [Ar!es (�)B]�1A [S � es (�)]
for any invertible (J � J) matrices A and B. We set A to be the identity matrix and B a diagonal
matrix whose (j; j) element is (@esj (�) =@!j)�1. The reason for adjusting the scale of the diagonal
elements is that the matrix r!es (�) is diagonally dominant (Lee and Seo 2015, Lemma 1). We check
the condition number of r!es (�) to decide whether to apply the above identity. Roughly speaking,
if the condition number is 10m, we may lose up to m digits of accuracy. In our simulation, we apply

the above identity if the condition number is greater than 1015.

3. Use the contraction iteration, if computing B [r!es (�)B]�1 [S � es (�)] is still numerically ill-
posed: Adjusting the scale of the matrix r!es (�) does help obtain numerical stability but does not
guarantee it. Thus, if the condition number of r!es (�)B is still greater than 1015, the computation
may be still unreliable. In this case, we iterate contraction mappings 10 times and then try the

Newton step again.

4. Adopt a line search: Even if the condition number of r!es (�) is smaller than 1015, the Newton
step may not produce descent improvement if the current iterate is not close enough to the solution.

This is a well-known problem of the original Newton iteration (see for example Nocedal and Wright

2006). A line search is one of the popular choices to solve this problem. Even though there may be

more e¢ cient line search algorithm in the literature, we believe pursuing e¢ ciency of a line search

is beyond this paper. Instead, we do the following simple line search: If the next Newton iterate

!�+1 = !� + �! 2 RJ contains 0 or a negative element, we believe that the Newton step is too
large to be stable because the solution vector ! satis�es !j > 0 for all j = 1; :::; J . If so, we take
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the next Newton step as follows:

!� + a�!

for some a > 0: We set

a = 1
2=maxj

j�!j j���!�j ���
so that each component of !a;�+1 � !� + a�! is positive. But, since there is no guarantee

that this process converges, we compute the contraction iterate, !CTR;�+1j � !�jSj=esj (!� ;�) as
well. Then, between these two iterates, we choose the one producing a smaller change of !: If

!a;�+1 � !�

 < 

!CTR;�+1 � !�

, !a;�+1 is chosen as the next iterate. Otherwise, !CTR;�+1 is
chosen and 10 contraction iterations are applied since the Newton step seems unstable at the current

iterate.

5. Initial guess for ! in the next outer loop iteration: The value of a new parameter candidate

is not expected to move very far from the current value in the outer loop, and thus it is common

to use the current solution !� for the current parameter � as the initial guess for the market share

equations in the next outer loop iteration. However, the solution !� may not be accurately found

under some parameter values. (For example, it is not possible to compute the predicted market

share accurately under large parameter values such as standard deviation parameter values being

100.) Then, in the next iteration of the outer loop, it is also likely that the solution !�new ; given

a new parameter value �new; is hard to compute. Therefore, the objective function may produce

di¤erent values even under the same parameter values because the inaccurate solution could depend

on the initial guess for the market share equation. Then, unstable objective function values may

make the optimization routine move to a wrong direction and, even worse, oscillate. To avoid this

problem, if the inner loop does not converge at the current outer loop iteration, we set the initial

guess for the next outer loop iteration to be a predetermined value, not the inaccurate solution of

the current outer loop iteration. This way, the optimization routine may get out of a bad parameter

value area quickly.
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