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Abstract

This paper explores plausible deniability theoretically and experimen-
tally in a communication game motivated by Warner’s (1965) randomized
response technique (RRT). It thus links game-theoretic approaches to noisy
communication with survey practice in the field and a novel implementa-
tion in the lab. Consistent with equilibria of our game and in line with
Warner, the frequency of truthful responses in the lab is significantly higher
with randomization than without. Contrary to the intended use of RRT,
however, there are equilibria that translate into lower and even invalid
(negative) population estimates, and these are supported by both prior
and our own experimental findings.
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1 Introduction

We explore the role of plausible deniability both theoretically and experimentally

in a communication game motivated by Warner’s (1965) randomized response

technique.

Plausible deniability may be used to deflect responsibility1, distort informa-

tion2, and can reduce incentives for pro-social behavior.3 On the positive side, it

may provide protection for whistleblowers (Chassang and Padró i Miquel, 2013)

and make it possible to communicate useful first-order information while with-

holding destructive higher-order information (Ayres and Nalebuff, 1996). From a

design perspective, a natural question then is how to balance the benefits of plau-

sible deniability, e.g., privacy protection, with its costs, e.g., from contamination

of information channels.

The literature has studied a range of devices that can generate plausible deni-

ability, such as restrictions on ex post information about behavior (Tadelis, 2011;

Dana et al, 2006), indirect or ambiguous language (Ayres and Nalebuff, 1996;

Pinker, Nowak and Lee, 2008; Mialon and Mialon, 2013) and commitment to

random intervention (Chassang and Padró i Miquel, 2013). Recent theoretical

work on noisy communication channels (Blume, Board and Kawamura, 2007),

non-strategic mediators (Goltsman, Hörner, Pavlov and Squintani, 2009), strate-

gic mediators (Ivanov, 2010) and stochastic continuations (Krishna and Morgan,

2004) in variants of the Crawford-Sobel (1982) model, can also be viewed in this

vein: injecting randomness into communication environments moderates the in-

ferences made from messages. When, for example, messages are sometimes lost,

their non-arrival cannot entirely be attributed to those who would not send a

1An example is Admiral John Poindexter’s assumption of responsibility for the diversion
of some of the proceeds from arms sales to Iran to support the Contras in Nicaragua and his
withholding of documents from President Reagan to provide him with deniability (Bogen and
Lynch, 1989).

2Calomiris (2009) notes that in the case of novel financial instruments the lack of a track
record is a source of deniability for ratings agencies with an interest in ratings inflation.

3Tadelis (2011) reports data from a trust-game experiment in which trustees returned less
when their decisions could not be distinguished from random events. Dana et al. (2006) find
that experimental subjects frequently are willing to avoid playing a $10 dictator game in favor
of a $9 exit option, when using the exit option ensures that the (potential) receiving player
does not learn that otherwise a dictator game would have been played.
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message. Similarly, a “yes” answer is less revealing when the listener has only

imperfect knowledge of the question in response to which the answer is given.

In both cases randomness causes posterior beliefs of listeners and their responses

to those beliefs to vary less across messages. This makes it easier for speakers

whose interests are not perfectly aligned with listeners to provide some but not

all of their information. In short, randomness has the potential to encourage

information transmission by providing plausible deniability.

This potential of randomness providing plausible deniability was recognized

by Warner (1965), who proposed the randomized response technique (RRT) to

elicit information about sensitive issues, like sexual behavior or drug use. In one

version of RRT, a potential drug user is questioned by being asked to provide

a yes/no answer in response to either the statement “I have used illegal drugs

yesterday” or “I have not used illegal drugs yesterday.” The interviewer knows

the probability with which each question is asked, but in any given instance not

the question itself. On one hand, this provides privacy protection for the survey

respondent; a “yes” is not clear-cut evidence for drug use, even if the respondent

is always truthful. On the other, it permits the interviewer to make inferences at

the population level if the privacy protection is sufficient to induce truth-telling

by respondents.4

RRT has been used to gather information about a large variety of sensitive

issues, including drug use and doping (Striegel, Ulrich, and Simon, 2010), tax

evasion (Houston and Tran, 2001), employee theft (Wimbush and Dalton, 1997),

poaching (St John et al., 2012), regulatory non-compliance (Elffers, van der Heij-

den, and Hezemans, 2003) and the integrity of certified public accountants (Buch-

man and Tracy, 1982). Thus, at least in the domain of survey methods, there

4The second question can be replaced by an unrelated question such as “Have you ever vis-
ited a local library?” with the innocuous question technique. Another version of the randomized
response technique widely used in the survey statistics literature (e.g., St John et al., 2012)
is the forced response technique proposed by Boruch (1972). With this approach, depending
on the dice number they roll, respondents are instructed to either answer a sensitive question
or to give a prescribed response irrespective of the truth. In a related technique called the
item count technique (also known as the list response technique) proposed by Miller (1984),
respondents are asked to report how many of N + 1 items are true when among them only
one item is sensitive (see, e.g., Karlan and Zinman (2012) with an application to measuring
the use of micro finance loan proceeds and Coffman, Coffman, and Ericson (2013) on LGBT
populations).
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is some faith in the theoretical prediction that introducing randomness may aid

communication.

Is this faith justified? The use of RRT is predicated on randomization inducing

truth-telling. For this to be the case, a number of conditions have to hold jointly,

not all of which have received close scrutiny in the literature. First, it must be

the case that there is at least some preference for truth-telling so as to outweigh

privacy concerns; second, respondents must appreciate and process the inference-

moderating effect of randomness; and third, if the game that is induced between

interviewer and respondent has multiple equilibria, then a truth-telling one must

be selected.

Thus far, efforts to answer the question of whether RRT works as predicted,

rather than examining the above conditions, have primarily focused on two em-

pirical validation methods, individual validation and comparative validation. The

former relies on the rare instances when there is direct evidence on the question

of interest that can be contrasted with the results from a randomized response

study. The latter compares data from randomized response studies with those

from alternative survey methods (self-administered questionnaires, telephone in-

terviews, face-to-face interviews, and computer-assisted interviews). Examples of

comparative validation studies are Beldt, Daniel and Garcha (1982), Wimbush

and Dalton (1997), and Lensvelt-Mulders, Hox, van der Heijden and Maas (2005).

Their results suggest that RRT improves on direct questioning according to the

more-is-better criterion, where a higher population estimate of the stigmatizing

trait is interpreted as being more valid.

Recently, and independently, John, Loewenstein, Acquisti and Vosgerau (2013)

have conducted laboratory experiments to evaluate RRT. They are motivated by

empirical findings according to which there is frequent non-adherence to RRT

instructions, direct questioning often yields more valid responses than RRT and

sometimes RRT generates invalid prevalence estimates, with negative frequencies

or frequencies above 100% of the population. They suggest that those “para-

doxical findings” might be rooted in either unclear instructions or “protective

behavior” of participants who worry that innocuous responses are viewed as ad-

missions. Consistent with those rationales they find that non-adherence to RRT

instructions can be alleviated and estimates improved by framing jeopardizing
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responses as socially desirable and by clarifying that jeopardizing responses do

not amount to admissions.

We also provide experimental evidence for systematic non-adherence to RRT

instructions. Consistent with the prior evidence cited by John et al. (2013), in

our data RRT systemically underestimates the population proportion of the stig-

matizing trait, and when stigmatization aversion is high we get negative and thus

invalid estimates. In line with the findings of John et al. (2013) we experimen-

tally demonstrate that non-adherence can be explained with protective behavior

and that protective behavior becomes more pronounced with increasing concerns

about stigmatization relative to truth-telling incentives.

In addition we provide a game-theoretic framework that accounts for these

behaviors: the key is that even when adhering to RRT instructions is incentive

compatible, i.e., there is an equilibrium where responses are truthful, there is

a host of other equilibria with only partially truthful responses. There are two

competing focal principles, truth and privacy, which makes it problematic to

use focalness of truth for equilibrium selection. As a result, even under ideal

conditions the rationale for RRT, which implicitly appeals to the focalness of

truth, competes with an equally coherent narrative, in which privacy is focal.

This may encourage respondents to engage in protective behaviors that avoid

jeopardizing answers. If so, evaluations of RRT responses that ignore that agents

will strategize in this manner will be misleading.

Ljungqvist (1993) has treated RRT from the perspective of utility maximizing

agents and investigated the conditions for truth-telling to be incentive compat-

ible.5 Following in his footsteps, in this paper, we use RRT as a vehicle for

illustrating the potential benefits and limitation of randomness for information

transmission both theoretically and experimentally. We first formally analyze

RRT with a game theoretic model and then conduct an experiment to explore

whether the theoretical prediction of the model matches the behavior of subjects

in a laboratory setting.

Fully specifying a communication game helps make explicit the above men-

5Kawamura (2013) studies information transmission in social surveys where a welfare max-
imizing decision maker communicates with a random sample of individuals who have heteroge-
neous preferences.

4



tioned conditions for RRT to induce truth-telling. Following Ljungqvist (1993),

we use a payoff function for the respondent that trades off lying aversion against

stigmatization aversion and, in line with psychological game theory, makes the

respondent’s payoffs directly dependent on the interviewer’s beliefs. The game

formulation permits us to compare RRT equilibria with equilibria of the game in

which questions are known, which we refer to as the direct response technique

(DRT). It brings into focus the possibility of multiple equilibria, especially of equi-

libria that are informative without being truthful and might lead to misleading

inferences from RRT.

We provide a full characterization of the equilibrium set of the proposed com-

munication game for all relevant configurations of lying aversion and stigmatiza-

tion aversion parameters. The key insight from the formal model is that adhering

to RRT instructions is only one of many equilibria. There are other equally co-

herent narratives, in which responses are informative but not truthful. Those

narratives are supported by equilibria in which respondents protect themselves

by failing to give jeopardizing answers. Importantly, the equilibrium analysis sup-

ports the frequent empirical finding that RRT can deliver inaccurately low and

sometimes invalid (negative) estimates of the proportion of stigmatized traits in

a population.

Our experimental results show that there are some truthful responses by stig-

matized types under DRT, even for values of the lying aversion and stigmatization

aversion parameters for which theory rules out communication – there is over-

communication with DRT; the frequency of truthful responses by stigmatized

types under DRT responds positively to an induced increase in lying aversion;

RRT does raise the incidence of truthful responses by stigmatized types rela-

tive to DRT; stigmatized types are not approximately truthful under RRT for

induced preferences that admit truthful equilibria (despite the fact that lying

aversion, because of prior truth-telling preferences brought to the lab, is likely

to be stronger than what we induce with monetary incentives)—there is under-

communication with RRT; and, non-stigmatized types are less truthful under

RRT than under DRT. The key experimental result is that while RRT improves

truth-telling relative to DRT, it may result in lower and possibly invalid estimates

of the proportion of the population with the stigmatized trait.
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These distorted and possibly invalid population inferences are due to depar-

tures from truth-telling in line with the informative but not truthful equilibria

of our game theoretic model. In these equilibria as in our experimental data,

respondents answer truthfully when the answer is innocuous and lie some of the

time when the answer is jeopardizing.

The paper is organized as follows. Section 2 sets up and motivates our model.

In Section 3 we fully characterize the equilibrium sets of both the RRT and the

DRT versions of our model. Section 4 lays out our experimental design and

formulates hypotheses based on our characterization of equilibrium sets in the

theoretical model. In Section 5 we report our experimental findings. We conclude

in section 6 with an assessment of findings and suggestions for future research.

2 A Model of Survey Response

Our theoretical analysis examines how equilibrium behavior restricts information

transmission under different survey techniques. We consider a simple model with

two players and two types, where there is an interviewer and a respondent. While

in practice a survey typically involves many respondents, our modeling choice us-

ing a two-player game allows us to focus in a stark setting on the most important

issue surrounding the use of RRT—the incentive to respond informatively.

The respondent privately observes his type θ ∈ {s, t}, where s is designated

as the stigmatized type and t the regular type. Players have a common prior that

the two types are equally likely.6 The assumption that the prior is uniform is only

6Given that the raison d’être for RRT is to improve the estimation of an unknown population
parameter, the standard common prior assumption that we make in our model, that respondents
draw their type from a commonly known distribution parametrized by the prior probability of
an s type, may seem stronger than usual. It is tempting to model the uncertainty about the
probability of s-types and the interviewer’s inference problem explicitly. For our purposes this
would be overkill: (1) It would detract from our prime objective, to understand the operation
of the key rationale for RRT, that credibly introducing noise offers privacy protection; (2)
the privacy protection feature is logically prior to the inference problem and therefore worth
studying on its own (if privacy protection does not work in the interaction between a single
respondent and the interviewer, the rationale for RRT evaporates); (3) the complexity of the
analysis of our model suggests that an added layer of uncertainty would make the problem of a
full characterization of the equilibrium set intractable; (4) an implementation in the lab would
be less transparent, with less salient incentives for subjects; (5) whereas our model has a clear
antecedent in Ljungqvist’s (1993) analysis, there is presently no published attempt at a complete

6



made for convenience. None of the qualitative features of the analysis depend on

it. The principal reason for adopting a particular choice for the prior is that we

are interested in generating predictions for a lab experiment. Choosing a different

prior would give us similar predictions. Fully characterizing all equilibria for all

priors is intractable.

The interviewer elicits the respondent’s private type with a question, q, which

could either be “Are you an s?” (qs) or “Are you a t?” (qt). We compare two

response regimes, direct response and randomized response. A general setup that

encompasses both regimes has qs and qt drawn, respectively, with commonly

known probabilities ps and 1− ps. The outcome of the draw (i.e., which question

the respondent responds to) is known to the respondent but not to the interviewer.

The respondent responds to a question with r ∈ {y, n}, where the exogenous

semantics of y is “yes” and that of n “no.” The direct response regime corresponds

to the degenerate case in which ps ∈ {0, 1}; in the randomized response regime,

ps ∈ (0, 1
2
) ∪ (1

2
, 1).7

We assume that the respondent’s incentive is shaped by two considerations:

stigmatization aversion and lying aversion. Stigmatization aversion may be the

result of individuals directly caring about perceptions or be instrumental, when

the trait is associated with an illegal activity. Evidence for lying aversion has

been documented in several experimental studies of communication games (e.g.,

Sánchez-Pagés and Vorsatz, 2007; Gneezy, 2005).

Formally, we model stigmatization aversion as a belief-dependent preference.

The respondent’s payoff is a decreasing function of the interviewer’s belief, µs,

game-theoretic study of the full-blown inference problem in which both the interviewer and the
respondents are uncertain about the proportion of the population who have the stigmatized
trait (see, however, Flannery (2015), who provides a partial equilibrium characterization in a
model in which the proportion of the stigmatized types is uncertain; he shows that the truthful
responding condition in our model is sufficient for truthful responses in his model); (6) in order
to yield predictions that can be taken to the lab, a model that did address the inference problem
directly would have to make common knowledge assumption at some level, e.g, by assuming
that the population parameter of interest is drawn from a common knowledge distribution, for
otherwise Weinstein and Yildiz’ (2007) negative conclusions about game theoretic predictions
would apply; and, (7) as we will see, we will be able to think about population inference even in
our setting by simply applying the usual procedure to our data and to the frequencies predicted
by our game model.

7We rule out ps = 1
2 from consideration because it corresponds to the uninteresting case

where the interviewer obtains no information no matter how the respondent responds.
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that he is of the stigmatized type s. The designation of s and t as stigmatized

type and regular type is thus set by referring to the respondent’s payoff. For lying

aversion, we consider the triple (θ, q, r) ∈ {s, t} × {qt, qs} × {y, n} and define

a “truthful set” H = {(s, qs, y), (t, qt, y), (s, qt, n), (t, qs, n)}. The respondent

obtains a payoff gain if, for example, the event (s, qs, y) occurs in which his

type is s and he responds to “Are you an s?” with “yes.” We assume that the

respondent’s payoff function takes the following form:

U((θ, q, r), µs) = λIH (θ, q, r)− ξµs,

where λ, ξ ≥ 0 are parameters measuring, respectively, the degrees of lying aver-

sion and stigmatization aversion, and IH (θ, q, r) is an indicator function that

takes the value of 1 if (θ, q, r) ∈H and 0 otherwise.8 A higher value of λ means

that the respondent is more lying averse. Similarly, a more stigmatization averse

respondent will have a higher ξ.

To make sure that the information transmission problem is not trivial, we

further restrict the aversion parameters to satisfy 0 ≤ λ < ξ, or λ
ξ
∈ [0, 1),

so that stigmatization aversion strictly dominates lying aversion. The lying-

stigmatization aversion ratio, λ
ξ
, will serve an important role in our equilibrium

characterizations.

We assume that the only “action” the interviewer performs in the model is

to update her beliefs. A belief function of the interviewer is µs : {y, n} → [0, 1],

which specifies for each received response a probability that θ = s.9

8When λ > 0, “talk is not cheap” in our model. For work that introduces exogenous
preference for honesty into cheap-talk models, see, e.g., Chen (2011), Kartik, Ottaviani and
Squintani (2007), and Kartik (2009).

9Alternatively, one could make the respondent’s payoff a function of his belief about the be-
lief of the interviewer, e.g., the expected belief of the interviewer. Our modeling choice is guided
by simplicity, conformity with our experimental design, and the observation that in our setting
in equilibrium the distinction between the interviewer’s belief and the respondent’s expectation
of that belief disappears. For a discussion of possible modeling choices in psychological games
(Geanakoplos, Pearce and Stacchetti, 1989), see Battigalli and Dufwenberg (2009). Ottaviani
and Sørensen (2006) consider a cheap-talk game in which a sender cares about his reputation,
modeled as the discrepancy between the receiver’s belief about the state and the actual state.
In our model, the respondent’s (sender) payoff depends on how likely the interviewer believes
the state to be s. See also Bernheim (1994) for a model of conformity in which agents’ esteem,
derived from the opinion of others as in our case, is modeled via belief-dependent preferences.
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3 Equilibrium Characterization

The solution concept is perfect Bayesian equilibrium (henceforth equilibrium),

i.e., strategies are optimal given beliefs and beliefs are derived from Bayes’ rule

whenever possible. When a type responds truthfully according to the exogenous

semantics of y and n (e.g., s responds to qt with n), he is said to give a truthful

response. When a truthful response involves y (n), it is called an affirmative

(negative) truthful response. An equilibrium is said to be informative if both

y and n are used with positive probability in equilibrium and µs(y) 6= µs(n); if

both types of the respondent give truthful responses with probability one, the

equilibrium is truthful.

The following property of the interviewer’s posterior beliefs in equilibrium

plays a crucial role in the analysis of both response regimes:

Lemma 1. On the equilibrium path of any equilibrium of the survey response

model, the interviewer’s belief differential after the two different responses satisfies

|µs(y)− µs(n)| ≤ λ
ξ
.

This is a simple consequence of the fact that in equilibrium the “benefit,” λ,

from a truthful response must outweigh the “cost,” ξ|µs(y)− µs(n)|.

3.1 Direct Response

In the direct response regime, ps ∈ {0, 1}. A behavior strategy of the respondent,

σ : {s, t} → ∆{y, n}, specifies for each θ the distribution of responses to the

commonly known question, qs or qt. Without loss of generality, for the direct

response regime, we consider that “Are you a t?” is the question being asked:

Proposition 1. In the direct response regime in which q = qt (ps = 0),

1. for every lying-stigmatization aversion ratio λ
ξ
∈ (0, 1

2
], there are exactly

two equilibrium outcomes; in one both types respond with y and in the other

both respond with n; and, only the outcome where both types respond with

y survives the D1 criterion;10

10For the details of the D1 criterion, see Banks and Sobel (1987) and Cho and Krep (1987).
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2. for λ
ξ
∈ (1

2
, 1), there exists a unique equilibrium; this equilibrium is in-

formative, with t always giving an affirmative truthful response y and s

randomizing between y and n.

All proofs are in the appendix. Proposition 1 gives formal expression to

the predicament that calls for the use of RRT: if the respondent is sufficiently

stigmatization averse (relative to the degree of lying aversion), no information

can be transmitted when the survey question is direct.11

3.2 Randomized Response

In the randomized response regime, where ps is non-degenerate, the question q

that the respondent responds to becomes part of his private information, which

now consists of two components: (θ, q). Accordingly, a behavior strategy of

the respondent is σ : {s, t} × {qs, qt} → ∆{y, n}. The following proposition

characterizes the set of RRT equilibria:

Proposition 2. In the randomized response regime,

1. there exists a truthful equilibrium if and only if

ps ∈
[
ξ − λ

2ξ
, 1− ξ − λ

2ξ

]
;

2. there exists a non-truthful informative equilibrium if and only if

ps ∈
((

0,
ξ − λ
λ

]
∪
[
1− ξ − λ

λ
, 1

))⋂((
0,

1

2

)
∪
(

1

2
, 1

))
; and,

3. there exist uninformative equilibria for all ps ∈ (0, 1
2
) ∪ (1

2
, 1) if and only if

λ
ξ
∈ [0, 1

2
].

Since λ < ξ, it follows that the union of the sets in the first and second parts of

11When λ
ξ = 0, the game becomes one of cheap talk, and there is also a babbling equilibrium

in which s and t completely randomize between y and n with the same probabilities. The
proof of Proposition 1 and that of the upcoming Proposition 2 (Appendix A) contain complete
characterizations of the sets of equilibria in both response regimes.
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Proposition 2 is all of (0, 1), and therefore an immediate implication of this result

is:

Corollary 1. In the randomized response regime with λ
ξ
∈ (0, 1), there exists an

informative equilibrium for every ps ∈
(
0, 1

2

)
∪
(

1
2
, 1
)
.

Figure 1 depicts the regions of the parameter space in which informative equi-

libria exist in the randomized response regime. In a typical non-truthful infor-

mative equilibrium s and t respond truthfully if the response is not jeopardizing

and randomize otherwise.

(a) Truthful Equilibria (b) Non-Truthful Informative Equi-
libria

(c) All Informative Equilibria

Figure 1: Existence of Informative Equilibria for (ps,
λ
ξ
) ∈ (0, 1

2
) ∪ (1

2
, 1)× (0, 1)

Similar to the direct response regime, lying aversion (λ > 0) is a necessary

condition for the existence of informative equilibria. In addition to the change

that truthful responding can be sustained in equilibrium, another significant dif-

ference of randomized response is that information can now be transmitted for all
λ
ξ
∈ (0, 1). The interviewer’s uncertainty about which question is asked alleviates

the negative impact of stigmatization aversion, making information transmission

possible even when ξ is arbitrarily large.

3.2.1 Population Estimates

The essence of what can go wrong with using RRT is captured by the fact that

RRT admits informative equilibria that lead to distorted and sometimes invalid

(i.e. negative) population estimates. To see this note that if the question “Are you
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an s?” is asked with probability ps, everyone in a population answers truthfully

and the fraction who have the trait s is E, then the expected fraction of “yes”

answers is

Y = psE + (1− E)(1− ps),

solving for E and replacing Y with its sample equivalent Ŷ we obtain the preva-

lence estimator proposed by Warner

Ê =
Ŷ + ps − 1

2ps − 1
. (1)

Consider an environment in which λ
ξ

= 1
8

and suppose that ps = 0.4. In

this case there is no truthful equilibrium and thus Warner’s estimate for the

prevalence of the stigmatized trait would be biased for any data generated from

an equilibrium. There is an informative but non-truthful equilibrium in which

the respondent’s equilibrium strategy satisfies σ(y|s, qt) = 0.37, σ(y|t, qs) = 0.33,

σ(y|s, qs) = 1, σ(y|t, qt) = 1.12 For that strategy, the implied proportion of “yes”

answer is Ŷ = 0.6794 and therefore Warner’s prevalence estimate equals

Ê =
Ŷ + ps − 1

2ps − 1
=

0.6794 + 0.4− 1

0.8− 1
= −0.397

which is negative and therefore invalid. If we change the environment by reducing

stigmatization aversion so that λ
ξ

= 1
4

there is a truthful equilibrium, but also an

informative but non-truthful equilibrium in which the respondent’s equilibrium

strategy satisfies σ(y|s, qt) = 0.11, σ(y|t, qs) = 0.27, σ(y|s, qs) = 1, σ(y|t, qt) = 1.

For that strategy, the implied proportion of “yes” answer is Ŷ = 0.5873 and

therefore Warner’s prevalence estimate equals Ê = 0.0635, far from the true

population frequency of E = 0.5. This leads to the following observation:

Observation 1. The randomized response regime admits informative but non-

truthful equilibria that imply distorted and sometimes even invalid (negative)

expected estimates of the fraction of the population with the stigmatized trait.

Equilibria that result in extremely distorted estimates exists even under the most

favorable conditions for RRT, i.e. when there are truthful equilibria.

12The calculation of the mixed-strategy probabilities can be found in the proof of Proposition
2 in Appendix A.
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3.2.2 Information-Eliciting Performance

Observation 1 reminds us that ignoring strategic behavior under RRT may result

in misleading and nonsensical inference. One possible response is to try to inves-

tigate and then incorporate deviations from adherence to RRT instructions. This

has been proposed, for example, by Clark and Desharnais (1998). Our model can

be used to explore the potential of this approach.

We will focus on the most favorable condition, where the researcher knows the

respondents’ strategies both for DRT and RRT. In that case of course if sample

size is not an issue it is possible to obtain an accurate estimate of the proportion

of members of the population with the stigmatized trait. If sample size is an

issue, it becomes of interest how much information can be extracted from each

observation.

To this end, we evaluate the information-eliciting performance of the two

different response regimes using a standard measure from information theory

(Shannon, 1948). Specifically, we measure the maximal transmittable informa-

tion, as expressed by mutual information, from the respondent to the interviewer

that is consistent with equilibrium behavior.

We begin with a brief discussion of the nature and properties of mutual infor-

mation in the context of our environment. Suppose Pr(θ′) > 0 is the prior of the

respondent’s type θ′ and Pr(θ′|r′) is the posterior upon observation of response r′.

When r′ is observed at θ′, there is an informational gain if Pr(θ′|r′) > Pr(θ′) or
Pr(θ′|r′)
Pr(θ′)

> 1. Similarly, an informational loss occurs at θ′ if Pr(θ′|r′)
Pr(θ′)

< 1. One can

assign numerical values v
(
P (θ′|r′)
P (θ′)

)
to the informational gains and losses by intro-

ducing a function v : R → R that is strictly monotonic, continuous and satisfies

v(1) = 0. One such function is the logarithm. Using log(·) for v(·), the expected

net informational gain about the random variable θ due to the observation of the

random variable r is thus

I(θ; r) =
∑

(θ′,r′)∈{s,t}×{y,n}

P (θ′, r′) log
P (θ′|r′)
P (θ′)

,

which is precisely the definition of mutual information, where by continuity the

convention of 0 log 0 = 0 is adopted. Note that the above expression can be
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rewritten as I(θ; r) = H(θ) − H(θ|r), where H(θ) = −
∑

θ′∈{s,t} Pr(θ′) log Pr(θ′)

is the entropy of the respondent’s type and

H(θ|r) = −
∑

r′∈{y,n}

Pr(r′)
∑

θ′∈{s,t}

Pr(θ′|r′) log Pr(θ′|r′)

is the conditional entropy of the respondent’s type given r. Entropy is a measure

of the uncertainty of a random variable. Mutual information therefore measures,

quite intuitively, the reduction in the uncertainty about θ due to the observation

of r; it ranges from zero to one.13 14

In light of the multiple equilibria, we focus on the question: for a given lying-

stigmatization aversion ratio λ
ξ
, what is the mutual information of the respective

most informative equilibria in the two responses regimes, with “informativeness”

evaluated with respect to mutual information? We denote the maximal mutual

information by ĪD(λ
ξ
) for the direct response regime and ĪR(λ

ξ
) for the randomized

response regime.

Figure 2 summarizes our findings (the details can be found in Appendix B):

The upper left-hand panel shows that the maximal mutual information achiev-

able with DRT is zero for high relative stigmatization aversion, λ
ξ
< 1

2
, becomes

13Mutual information is also referred to as relative entropy or Kullback-Leibler divergence,
the divergence between the joint and product distributions of the random variable in question.
If the base of the logarithm is 2, which is commonly adopted in information theory, then the
unit of the entropy is in bits; if the base is e, the unit is in nats. Given that our model has a
binary type space, we use 2 as our base. For an excellent reference in information theory, see
Cover and Thomas (1991).

14Given that in our model no payoff function is specified for the interviewer, there is no
obvious candidate for defining a value of information that would be less arbitrary than using
mutual information. Also, pursuing the goal of maximizing the precision of the estimator of the
population frequency of stigmatization subject to a truth-telling constraint, as in Ljungqvist
(1993), is compromised by the presence of multiple equilibria. This, and the fact that mutual
information is widely used in information theory, motivate us to adopt it as our measure
of informational gain. Jose, Nau and Winkler (2008) investigate how entropy measures of
information relate to utility. Kelly (1956) links information-theoretic measures with the value
of information in the case of a gambler who receives information through a noisy channel.
Donaldson-Matasci, Bergstrom and Lachmann (2010) identify uncertain environments in which
the biological fitness value of information corresponds exactly to mutual information and show
more generally that mutual information is an upper bound on the fitness value of information.
Information-theoretic measures of information have been used in macroeconomics to study the
consequences of information processing constraints (Sims, 2003), and in organization theory
to capture the idea that organizations have limited communication capacity (Dessein, Galeotti
and Santos, 2013).
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Figure 2: Maximal Mutual Information
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positive for moderate relative stigmatization aversion, λ
ξ
> 1

2
, and increases to

one as λ
ξ
→ 1. The upper right-hand panel shows that, in contrast, the maximal

mutual information achievable with truthful RRT equilibria is strictly positive re-

gardless of the relative stigmatization aversion and thus improves on DRT when

stigmatization aversion is relatively high. While DRT is dominated by RRT for

relatively high stigmatization aversion, the same is not the case for moderate

stigmatization aversion, as shown in the two lower panels. Below λ
ξ
≈ 0.743 RRT

dominates DRT and the optimal mutual information is achieved with a truthful

RRT equilibrium. Beyond that value RRT and DRT are tied and the optimal

truth-telling RRT equilibrium is dominated by the optimal DRT equilibrium (and

also an informative non-truthtelling RRT equilibrium).

4 Experimental Implementation

We experimentally implement the two response regimes, using monetary incen-

tives to induce laboratory environments that are faithful to the theoretical model.

We begin by describing our experimental treatments and hypotheses in Section

4.1, discussing the rationales behind the adoption of the model parameters for

the treatments. We then describe in Section 4.2 the laboratory environments in

which these treatments were conducted.

4.1 Treatments and Hypotheses

Table 1 describes our treatments. It shows a 2× 2 design, where the rows of the

matrix correspond to the values of λ
ξ
∈
{

1
4
, 1

8

}
and the columns to the values of

ps ∈ {0, 0.4}. The value λ
ξ

= 1
4

represents low relative stigmatization aversion

and λ
ξ

= 1
8

high relative stigmatization aversion. The value ps = 0 corresponds

to an instance of the direct response regime and ps = 0.4 to an instance of the

randomized response regime.

Our choice of parameters is guided by two considerations: (1) We are inter-

ested in a sharp distinction between RRT and DRT and (2) we like to evaluate

RRT under conditions where it is most relevant in the field. Both of these consid-

erations suggest to look at parameterizations for which stigmatization aversion

16



Table 1: Experimental Treatments

ps = Prob(qs) = 0 ps = Prob(qs) = 0.4

λ
ξ = 1

4 DirectLow : Direct Response / Low
Relative Stigmatization Aversion
(Equilibrium Prediction: No Informa-
tive Equilibrium)

RandomLow : Randomized Response /
Low Relative Stigmatization Aversion
(Equilibrium Prediction: Truthful Equi-
librium Exists)

λ
ξ = 1

8 DirectHigh: Direct Response / High
Relative Stigmatization Aversion
(Equilibrium Prediction: No Informa-
tive Equilibrium)

RandomHigh: Randomized Response /
High Relative Stigmatization Aversion
(Equilibrium Prediction: Informative
But Not Truthful Equilibria Exist, No
Truthful Equilibria Exist)

is high (relative to lying aversion). For the parameters in our experiment, the-

ory predicts that there is no information transmission under DRT whereas there

is always an informative equilibrium under RRT and under one condition an

equilibrium with truthful responses, thus inducing the sharp separation we are

looking for. High stigmatization aversion corresponds to more sensitive traits in

the field, the case for which RRT is of most interest.

With these parameter values, the equilibrium analysis of our model predicts

that there will be no information transmission in the direct response treatments,

and in the randomized response treatments truthfulness of the respondent is

possible only with λ
ξ

= 1
4
, i.e., when the stigmatization aversion is not too high.

In the direct response treatments, DirectLow and DirectHigh, “Are you a t?”

is always asked (ps = 0). In the randomized response treatments, RandomLow

and RandomHigh, “Are you an s?” is asked 40% of the time (ps = 0.4). Being

truthful arguably represents the most distinct behavior in the randomized re-

sponse regime, and this becomes one of our criteria in choosing the value of ps.

According to Proposition 2, in RandomLow with λ
ξ

= 1
4

there exists a truthful

equilibrium when ps ∈ [0.375, 0.625]. Furthermore, the performance of the truth-

ful equilibrium is at its maximum when ps is at the boundaries of the range. For

convenience in implementations while maintaining as much difference (in terms

of performance) as possible from the direct response treatments, we round up
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0.375 and use ps = 0.4.15 Note that non-truthful informative equilibria also ex-

ist under the chosen parameters. In RandomHigh with λ
ξ

= 1
8
, the existence of

truthful equilibrium requires a different set of values of ps that does not include

0.4. However, in order to facilitate clean comparison between the two randomized

response treatments with change in only one treatment variable, we keep ps = 0.4

for RandomHigh. Theoretically, with λ
ξ

= 1
8

and ps = 0.4, there are non-truthful

informative equilibria.

Our theoretical results also inspire our experimental hypotheses. Given the

multiplicity of equilibria, we formulate hypotheses only when definite qualitative

comparisons can be backed by the predictions of equilibrium and the D1 criterion.

We begin with the behavior of the stigmatized type in different response regimes,

comparing across the columns of the treatment matrix. The unique D1 pooling

equilibria predict that in the direct response treatments type s always lies. On

the other hand, in the randomized response treatments equilibrium predicts that

type s either always tells the truth or does so with positive probability. This

gives us our first hypothesis:

Hypothesis 1. Stigmatized types provide truthful responses significantly more of-

ten in the randomized response treatments than in the direct response treatments.

Our second hypothesis focuses on the direct response treatments, covering

explicitly the prediction of the D1 criterion and the effect of different levels of

relative stigmatization aversion. The latter pertains to comparison across the

rows of the treatment matrix.16 The D1 pooling equilibria predict the same

respondent’s behavior in DirectLow and DirectHigh, where both s and t always

respond with “yes” to “Are you a t?” This suggests the following hypothesis:

Hypothesis 2. 1) In each of DirectLow and DirectHigh, both stigmatized types

and regular types respond with “yes” significantly more often than with “no,” and

there is no significant difference in the uses of “yes” between them. 2) The uses

15The decision to round up the lower boundary value instead of rounding down 0.625 is
motivated by consistency with the direct response treatments in which, between ps = 0 and
ps = 1, the lower value is used.

16The multiple equilibria under the randomized response treatments do not provide defi-
nite comparisons. We thus do not hypothesize on the comparisons between RandomLow and
RandomHigh.
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of responses by both stigmatized types and regular types do not differ significantly

between DirectLow and DirectHigh.

We turn next to the interviewer’s beliefs within each treatment, after “yes”

and “no”:

Hypothesis 3. 1) In the direct response treatments, the interviewers’ elicited

beliefs assign significantly higher probability to s after “no” than after “yes,” and

the beliefs after “yes” are not significantly different from the prior 0.5. 2) In the

randomized response treatments, the interviewers’ elicited beliefs after “yes” and

after “no” are significantly different.

In the direct response treatments, the D1 pooling equilibria predict that the

belief after “yes” is that s and t are equally likely, while the out-of-equilibrium

belief after “no” has to be sufficiently higher than 0.5 to support the equilibrium.

With the anticipation that both responses will be observed, this serves as the

basis of the first part of the hypothesis. In the randomized response treatments,

a higher belief assigned to s after “yes” or after “no” are both consistent with

equilibrium. We thus do not hypothesize beyond the fact that the beliefs are

different. And which belief profile will prevail in the laboratory—a question that

will be relevant to equilibrium selection—is an empirical issue that we explore

with the experiments.

4.2 Design and Procedures

Our experiment was conducted at the Pittsburgh Experimental Economics Lab.

A total of 304 subjects with no prior experience in these experiments were re-

cruited from the undergraduate/graduate population of the University of Pitts-

burgh to participate in 16 experimental sessions, four per each treatment. A

between-subject design was used, and each session involved 16− 20 distinct sub-

jects making decisions in 8 − 10 randomly matched groups.17 The experiment

was programmed and conducted using z-Tree (Fischbacher, 2007).

17We set a recruiting target of 20 subjects (10 groups) for a session and set a minimum of
16 in case of insufficient show-ups. We met our target for 10 sessions, with the remaining six
sessions four conducted with 18 subjects and two conducted with 16 subjects.
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In each session, half the subjects were randomly assigned the role of Member

A (respondent) and the other half the role of Member B (interviewer), with role

assignments remaining fixed throughout the session. They participated in 40

rounds of decisions in groups of two.18 After each and every round, subjects

were randomly rematched, i.e., we used random matching. In each group and

each round, the computer randomly drew either SQUARE (s) or TRIANGLE

(t). Both members were informed about the fact that each shape would have

an equal chance to be drawn, but the selected shape would be revealed only to

Member A. In the direct response treatments, Member A was presented with

the question “Was TRIANGLE selected?” (qt), which was known to Member B.

In the randomized response treatments, the computer would draw a question

from either “Was SQUARE selected?” (qs) or “Was TRIANGLE selected?” Both

members were informed about the fact that the former question would have a 40%

chance to be drawn, but the selected question would be revealed only to Member

A. In both sets of treatments, Member A responded to the question being asked,

either with “yes” or “no.” The response was revealed to Member B, who was

then asked to predict the likelihood that SQUARE or TRIANGLE was drawn.

Member B was asked to allocate 100 shapes between SQUARE and TRIANGLE,

where the number of SQUARES would represent the predicted likelihood that

SQUARE was selected.

We used monetary incentives to induce lying and stigmatization aversions.

Subjects were rewarded in each round in experimental currency units (ECU).19

If Member A’s response to the question truthfully reported which shape was

selected, he/she would receive 300 ECU in DirectLow/RandomLow and 275 ECU

in DirectHigh/RandomHigh; otherwise with untruthful responses, he/she would

receive 250 ECU. Lying aversion was thus induced as earning either 50 ECU or

18Before the 40 official rounds, subjects participated in 6 rounds of practice, in which they
assumed the role of Member A for three rounds and Member B for another three rounds. The
objective of subjects assuming both roles in the practice rounds was to familiarize them with
the computer interface and the flow of the whole decision process.

19We randomly selected three rounds and used the average earning in the selected rounds
for real payments at the exchange rate of 10 ECU for 1 USD. As will be discussed below, there
was a rather large discrepancy of what a Member B could earn in a round. The use of three
round average was intended to smooth out the variations. Payments to subjects ranged from,
including a $5 show-up fee, $10 to $35, with an average of $29.7.
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25 ECU for being truthful.

Stigmatization aversion was induced as follows: in all treatments Member A’s

ECU earned from giving the response would be reduced by, in ECU, twice the

number of SQUARES allocated by Member B; thus, compared to the case when

Member B predicted a zero probability of SQUARE, Member A’s earning was

200 ECU lower than when Member B predicted a probability of one. Note that in

implementing different levels of relative stigmatization aversion, our design varied

the absolute level of lying aversion instead of the absolute level of stigmatization

aversion: in DirectLow and RandomLow λ
ξ

= 1
4

was implemented as 50
200

and in

DirectHigh and RandomHigh λ
ξ

= 1
8

was implemented as 25
200

.20

Member B’s rewards revolved around the provision of incentives for truthful

reporting of beliefs.21 We used a belief-elicitation mechanism in which, irrespec-

tive of risk attitudes, truthfully reporting one’s beliefs is a dominant strategy

(Karni, 2009).22 In the following, we describe the essence of our reward proce-

dure that implements the mechanism; the details of the presentation to subjects

can be found in the experimental instructions in Appendix B.

The procedure enlisted the use of two binary lotteries. We used the upper and

lower bounds of Member A’s earnings, 300 ECU and 50 ECU, as the lotteries’

monetary outcomes. After Member B predicted the likelihood of SQUARE/TRI-

20This design approach was necessitated by maintaining reasonable bounds on earnings
which did not differ by too much across treatments. The base earning of 250 ECU ensured,
with the induced ξ = 200, that subjects received a minimum of 50 ECU in a round; sub-
jects were thus guaranteed, excluding the show-up fee, a positive payment of $5. On the
other hand, the maximum ECU that a subject could earn in a round was 275− 300; subjects’
pre-show-up-fee payments were thus capped by $27.5 in DirectHigh/RandomHigh and $30 in
DirectLow/RandomLow. Had we varied the absolute level of stigmatization aversion, we would
have had to adjust the base earning upward for DirectHigh and RandomHigh resulting in a
considerably higher upper bound of payments or, with no such upward adjustment, accept the
possibility of negative earnings.

21Given the passive role of the interviewer in the model, a conceivable, alternative way to
implement it in the lab is to replace Member B (and thus remove the need of using rather
complex belief-elicitation mechanism and any concern over Member B’s other-regarding prefer-
ences) with a program that mechanically updates beliefs following Bayes’ rule. However, given
that our games have multiple equilibria with no clear theoretical guidance for selection, even
with the restriction of Bayes’ rule it is unclear how the program should update beliefs upon
inputs from Member A. Using such a program may therefore not be appropriate.

22Other efforts to attenuate biases caused by risk attitudes in belief elicitation include Allen
(1987), Offerman, Sonnemans, van de Kuilen and Wakker (2009), Schlag and van dër Weele
(2009) and Hossain and Okui (2013).
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ANGLE, he/she would be presented with a lottery that also involved SQUARE

and TRIANGLE. The probability of drawing a SQUARE in this lottery has been

randomly determined out of 100 uniform possibilities with 1
100

increments and was

revealed to Member B at this point. If the probability of drawing a SQUARE

in this lottery turned out to be higher than Member B’s predicted likelihood of

SQUARE having been selected for Member A, he/she would draw from this lot-

tery, receiving 300 ECU for drawing a SQUARE and 50 ECU for a TRIANGLE.

Otherwise, Member B’s earning would depend on Member A’s shape, which con-

stituted another binary lottery: he/she would earn 300 ECU if it was a SQUARE

and 50 ECU if it was a TRIANGLE. Under this reward procedure, making pre-

dictions according to true beliefs always guaranteed Member B a draw from one

of two lotteries where the (subjective) probability of earning the higher “prize,”

300 ECU, was higher, thus providing the incentives for eliciting true beliefs.23

At the end of each round, we provided information feedback on which shape

and, for the randomized response treatments, which question were selected and

revealed to Member A, Member A’s response, Member B’s prediction, and the

subject’s own earning.

5 Experimental Findings

5.1 Respondents’ Responses and Interviewers’ Beliefs

Figure 3 presents the trends of truthful response frequencies. Our first result

compares, across the columns of the treatment matrix, the randomized response

treatment with the direct response treatment:

Result 1. 1) Stigmatized types provided truthful responses decidedly more often

in the randomized response treatments than in the direct response treatments.

2) Regular types provided truthful responses more often in the direct response

treatments than in the randomized response treatments.

Result 1 confirms Hypothesis 1. The frequencies of truthful responses by s-

types, aggregated across the last 20 rounds of all sessions, were 37% in DirectLow

23Using induced beliefs, Hao and Houser (2012) experimentally evaluate the mechanism in
Karni (2009). The way we presented the mechanism to the subjects was similar to theirs.
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Figure 3: Trends of Truthful Response Frequencies

and 19% in DirectHigh. The corresponding frequencies were 89% in RandomLow

and 79% in RandomHigh. Using session-level data as independent observations,

statistical tests confirm that the frequencies are significantly higher in the ran-

domized response treatments irrespective of the levels of relative stigmatization

aversion (p = 0.0143 for all four possible comparisons, Mann-Whitney tests).24

For t-types, the truthful response frequencies were significantly higher in the di-

rect response treatments, but in aggregate the magnitudes of the differences were

at most one third of those of s-types: the frequencies were 98% in both DirectLow

and DirectHigh, 90% in RandomLow, and 84% in RandomHigh (p = 0.0143 for

all four possible comparisons, Mann-Whitney tests).

The fact that t-types become less truthful with RRT, while s types become

more truthful, is consistent with the form informative non-truthful equilibria take

in the game we analyzed. Unlike with DRT, with RRT being truthful requires

regular types sometimes to give jeopardizing answers. The intuition that they

may want to avoid doing so and engage in non-truthful protective behavior instead

is confirmed by both our formal analysis and our experimental data.

We noted in Observation 1 of our theoretical analysis that the protective be-

24All aggregate data reported and used for statistical testings are from the last 20 rounds.
The qualitative aspects of our findings remain unchanged if we use, for example, data from
the last 30 or even all 40 rounds. However, the frequency trends, especially those for types s
in the direct response treatments where convergence was most conspicuous, suggest that the
20th round provides a reasonable cutoff for behavior having settled down. Using data from
the last 20 rounds thus allows us to give more weight to converged behavior. Unless otherwise
indicated, the reported p-values are from one-sided tests.
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havior of regular types may result in distorted and even invalid estimates of the

proportion of stigmatized types in the population. This concern is validated by

our experimental data, as shown in Table 2. There we report for each session the

estimated prevalence of the stigmatized type in the population, using the estima-

tor proposed by Warner (see equation (1)). We find that regardless of whether

DRT or RRT is used, the estimated population proportion of the stigmatized type

is underestimated. Furthermore, on average RRT yields a less accurate estimate.

With higher stigmatization aversion the estimated proportion drops and in three

out of four sessions with RRT the estimate becomes invalid.

Table 2: Actual and Estimated Proportions of Stigmatized Types

Actual Estimated Actual Estimated

DirectLow RandomLow

Session 1 0.51 0.21 0.55 0.28
Session 2 0.50 0.18 0.47 0.14
Session 3 0.45 0.09 0.50 0.08
Session 4 0.46 0.25 0.50 0.11

Mean 0.48 0.19 0.50 0.15

DirectHigh RandomHigh

Session 1 0.49 0.11 0.46 -0.45
Session 2 0.44 0.04 0.59 -0.22
Session 3 0.45 0.09 0.56 -0.58
Session 4 0.50 0.17 0.48 0.08

Mean 0.47 0.10 0.52 -0.29

Note: Data are from last 20 rounds of each session. The means for treatments are calculated using
each group in each round as an observation.

In principle it is conceivable that respondents did not answer truthfully be-

cause they did not understand the experimental instructions. There are, however,

two reasons to believe that this is not the case. First, as we have seen, departures

from truth are in line with incentives for privacy protection by regular types. Sec-

ond, there is no apparent time trend in the estimated proportion, as shown in

Figure 4, and therefore greater familiarity with the setup did not lead to improved

prevalence estimates.

Given that in the direct response treatments s’s truthful response involves

“no” and t’s truthful response involve “yes,” the frequencies reported above imply

the following which addresses the first part of Hypothesis 2:
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Figure 4: Trends of Prevalence Estimates

Result 1a. 1) In DirectLow, regular types and, to a lesser degree, stigmatized

types responded with “yes” significantly more often than with “no.” In DirectHigh,

both stigmatized types and regular types responded with “yes” significantly more

often than with “no.” 2) In both treatments, regular types responded with “yes”

significantly more often than did stigmatized types.

Figure 5 presents the aggregate frequencies of responses. The behavior of t-

types was very close to the point prediction of the D1 pooling equilibrium, where

in both DirectLow and DirectHigh the frequencies of “yes” were 98%. On the

other hand, s-types used “yes” less often than did t-types, rejecting the hypothesis

that there is no significant difference between their behavior (p = 0.0625 for both

treatments, Wilcoxon signed-rank tests). Given that t-types almost always re-

sponded with “yes,” s-types’ non-negligible uses of “no” transmitted information,

in contrast to the prediction of the pooling equilibrium. Over-communication,

a common finding in the experimental literature of communication games (e.g.,

Forsythe, Lundholm and Rietz, 1999; Blume, Dejong, Kim and Sprinkle, 1998,

2001; Cai and Wang, 2006), was thus also observed in our experiments.25 The

qualitative prediction that “yes” is used more often than “no” by s-types was,

however, largely confirmed (p = 0.0625 for DirectHigh and p = 0.125 for Direct-

25We conducted an additional session for robustness check, where the parameters were the
same as DirectLow except that ps = 1 (i.e., the direct question became “Are you an s?”).
Compared to DirectLow with ps = 0, a higher instance of over-communication by s-types was
observed: the frequency of truthful “yes” response was 46%. There was almost no difference
for t-types, where the frequency of truthful “no” response was 99%.
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Low, Wilcoxon signed-rank tests).
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Figure 5: Frequencies of Responses

Despite equilibrium predicting no behavior difference between DirectLow and

DirectHigh, in light of the over-communication observed, a natural question is

how the difference responds to the different incentives under alternative levels

of relative stigmatization aversion. Our next result addresses the question by

comparing across the row of the treatment matrix, covering also the randomized

response treatments:

Result 2. 1) Stigmatized types provided truthful responses significantly more of-

ten in the low relative stigmatization treatments than in the high relative stigma-

tization treatments. 2) To a lesser degree, regular types provided truthful response

significantly more often in RandomLow than in RandomHigh; there was no signif-

icant difference in regular types’ truthful response frequencies between DirectLow

and DirectHigh.

For the direct response treatments, the second part of Hypothesis 2 is con-

firmed for t-types but not for s-types: the stronger relative stigmatization aversion

in DirectHigh had no impact on t-types’ behavior (two-sided p = 1, the Mann-

Whitney test), whereas s-types over-communicated less when it was more costly

to do so (p = 0.0286, Mann-Whitney test).

In the randomized response treatments, the different levels of relative stigma-

tization aversion affected the truthful behavior of both s-types and t-types, with

a slightly stronger effect on the former (p = 0.0143 for s-types and p = 0.0571
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for t-types, Mann-Whitney tests). Figure 5(b) shows that the frequencies of

affirmative truthful responses were largely the same in RandomLow and Ran-

domHigh, and the effects of stronger relative stigmatization aversion were ex-

erted through negative truthful responses. For the question “Are you an s?”

s-types responded affirmatively with “yes” with frequencies 97% in RandomLow

and 93% in RandomHigh; t-types responded negatively with “no” with frequen-

cies 78% in RandomLow and 63% in RandomHigh. For the question “Are you a

t?” t-types responded affirmatively with “yes” with frequencies higher than 99%

in both RandomLow and RandomHigh; s-types responded negatively with “no”

with frequencies 84% in RandomLow and 67% in RandomHigh.26

The significantly lower frequencies of negative truthful responses for the ques-

tion “Are you an s?” in both RandomHigh and RandomLow treatments repre-

sent the kind of protective behavior by non-stigmatized types that John et al.

(2013) make responsible for occasional non-intuitive data obtained with RRT.

Since in our experiment “Are you a t?” is the more frequently asked question, in

a putative truthful equilibrium a “no” response is more jeopardizing: “no” is the

response that moves posterior beliefs in the direction of giving more weight to the

stigmatized s-type. Thus t-types (as well as s-types), all else equal, have an in-

centive to avoid giving “no” responses. In a truthful equilibrium this incentive is

balanced by the incentive to be truthful. As our equilibrium analysis reveals, how-

ever, a complicating feature is that there are multiple equilibria and we therefore

face an equilibrium selection problem. It is not implausible that the balance of

stigmatization and truthfulness concerns also affects equilibrium selection; from

this perspective the focal principle of privacy protection may undermine that of

truthfulness and push equilibrium behavior away from the extreme of pure truth

telling.27

26Given the rather unusual randomization of questions from subjects’ perspective, it is con-
ceivable that an experimenter effect existed in which subjects expected that the experimenter
expected them to deceive the interviewer when questions were randomized. One would, how-
ever, expect that the effect existed more or less uniformly across different questions. The
observation that s-types’ frequencies of truthful responses varied across questions (more af-
firmative truthful responses than negative truthful responses) suggested that the potential of
experimenter effect is likely to be small.

27An additional contributing factor for observing protective behaviors in the field may be
heterogeneity in individual weighting of truth-telling and stigmatization concerns. Those with
stronger stigmatization concerns might be expected to engage in protective behaviors even if
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To further explore what drove the respondents’ observed behavior, we bring

the interviewers’ beliefs into the picture. The “Elicited” columns in Table 3

present the interviewers’ elicited beliefs.28 Observations from individual subjects

were fairly noisy as can be seen by the high standard deviations. We proceed to

our next result, which addresses Hypothesis 3:

Table 3: Elicited and Empirical Beliefs Assigned to Type s

Response “yes” “no” “yes” “no”
Beliefs Elicited Empirical Elicited Emp Elicited Emp Elicited Emp

DirectLow DirectHigh

Session 1 0.39 (0.21) 0.39 0.71 (0.25) 0.87 0.31 (0.16) 0.44 0.77 (0.15) 0.86
Session 2 0.33 (0.19) 0.39 0.87 (0.12) 1.00 0.40 (0.23) 0.42 0.69 (0.35) 0.75
Session 3 0.37 (0.31) 0.40 0.87 (0.16) 0.93 0.38 (0.14) 0.40 0.71 (0.28) 0.88
Session 4 0.43 (0.24) 0.30 0.71 (0.24) 0.96 0.37 (0.16) 0.39 0.65 (0.20) 1.00

Mean 0.38 (0.04) 0.37 0.79 (0.09) 0.94 0.36 (0.04) 0.42 0.70 (0.05) 0.87

RandomLow RandomHigh

Session 1 0.42 (0.21) 0.45 0.65 (0.16) 0.68 0.43 (0.20) 0.43 0.51 (0.19) 0.50
Session 2 0.52 (0.24) 0.37 0.63 (0.21) 0.62 0.33 (0.22) 0.52 0.67 (0.20) 0.71
Session 3 0.45 (0.26) 0.44 0.64 (0.26) 0.59 0.40 (0.13) 0.50 0.54 (0.12) 0.71
Session 4 0.48 (0.17) 0.47 0.58 (0.14) 0.54 0.33 (0.21) 0.44 0.57 (0.23) 0.54

Mean 0.46 (0.04) 0.43 0.63 (0.03) 0.61 0.37 (0.05) 0.47 0.57 (0.07) 0.61

Note: Data are from last 20 rounds of each session. For the elicited beliefs, the parentheses contain standard
deviations. The standard deviations for each session are calculated using each group in each round as an
observation. Standard deviations for treatments are calculated using each session as an observation. For
the empirical beliefs, the numbers are obtained by applying Bayes’ rule to the observed frequencies of the
respondents’ types, the questions, and the respondents’ responses conditional on types, aggregated across
the last 20 rounds of each session.

Result 3. 1) In all treatments, the probabilities assigned to s according to the

elicited beliefs were significantly higher after “no” than after “yes.” 2) In the

direct response treatments, the probabilities assigned to s according to the elicited

beliefs after “yes” were significantly below 0.5.

The interviewers’ elicited beliefs were consistent with the over-communication

observed in the direct response treatments. While the D1 pooling equilibrium

predicts that the interviewer believes s and t to be equally likely after receiving

“yes,” the aggregate elicited beliefs assigned to s were 0.38 in DirectLow and

others are content with being truthful.
28We use the 20th round as the cutoff for aggregations so as to maintain consistency with

the aggregations of respondents’ data. In most cases, the trends were stable over round.
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0.36 in DirectHigh, significantly lower than 0.5 (p = 0.0625 for both treatments,

Wilcoxon signed-rank tests). It did, however, indicate that the interviewer-

subjects believe—correctly—that their opponents were transmitting information.

The out-of-equilibrium “no” was received, on average, 19% of the time in

DirectLow and 10% of the time in DirectHigh. The corresponding elicited beliefs

assigned to s were 0.79 in DirectLow and 0.70 in DirectHigh, significantly higher

than when “yes” was received (p = 0.0625 for both treatments, Wilcoxon signed-

rank tests). In fact, in DirectLow 44% of the time the elicited beliefs were equal or

larger than 0.9, while it was 31% in DirectHigh. The low but positive frequencies

observed for “no” provided a window to investigate how the interviewer-subjects

assigned beliefs for events that in theory are off the equilibrium path. Although

it did not require a sophisticated reasoning to assign a higher probability to s

given that the interviewer-subjects were receiving “no” to “Are you a t?” the

elicited beliefs reflected the forward-induction reasoning that s was more likely

than t to respond with “no.”

Note that with higher probabilities assigned to s after “no” than after “yes,”

responding with “yes” provided t-types with two monetary rewards, one from

telling the truth and one from inducing a lower probability assigned to s. This

accounted for why t-types almost always provided truthful responses. On the

other hand, when s-types told the truth with “no,” they were trading the truth-

ful response reward for a higher probability assigned to s. Given the magnitudes

of elicited beliefs, the latter on average was sufficient to outweigh the former,

suggesting that considerations other than monetary rewards might be driving

the over-communication on the respondents’ part, depriving us of equilibrium be-

havior insofar as monetary incentives are concerned.29 Prior experimental studies

have documented that subjects have intrinsic preference for honesty (e.g., Gneezy,

2005; Sánchez-Pagés and Vorsatz, 2007). In our case, it is conceivable that home-

grown lying aversion was brought into the laboratory which added on to the one

we induce with monetary rewards, resulting in a lower effective level of relative

stigmatization aversion.30 Indeed, the respondents’ observed behavior resembled

29To support the uninformative equilibria, the out-of-equilibrium beliefs assigned to s were
required to be ≥ 0.75 in DirectLow and ≥ 0.625 in DirectHigh.

30Note that since the experimental procedure involves no real stigmatization, with stigma-
tization aversion induced through preferences over revealing context-free SQUARES and TRI-
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the informative equilibrium under a higher lying-stigmatization aversion ratio.31

The elicited beliefs assigned to s after “no” were 0.63 in RandomLow and

0.57 in RandomHigh, significantly higher than the beliefs after “yes,” which were

0.46 in RandomLow and 0.37 in RandomHigh (p = 0.0625 for both treatments,

Wilcoxon signed-rank tests). In all the equilibria under the adopted parameters,

the interviewer’s beliefs assigned to s were in the neighborhoods of 0.6 after

one response and 0.4 after another. Whether the higher probability occurred

after “yes” or after “no” was consistent with equilibrium. With the aid of more

sophisticated reasoning than was required in the direct response treatments but

nothing close to a full-blown use of Bayes’ rule, the probabilities of the questions

might have provided a focal point for subjects to form beliefs that are close to the

predicted values and with the higher values assigned after “no.” Upon receiving

“yes,” if an interviewer-subject considers that the respondent is very likely telling

the truth, it is fairly straightforward to reason that with probability around 0.4

the respondent’s type is s, because such is the probability that “Are you an

s?” is asked. Similar reasoning would lead one to conclude that the probability

of s should be around 0.6 after “no.” While there were considerable variations

in individual observations so that the aggregate numbers close to the predicted

values might not be representative, the above reasoning may have at least led

subjects to believe correctly that “no” was more likely to come from s than is

“yes.”

Equilibria that are consistent with the elicited belief profiles are: a truthful

equilibrium in RandomLow ; informative equilibria in both RandomLow and Ran-

domHigh in which the respondent always gives affirmative truthful responses but

randomizes between “yes” and “no” when truthful responses are negative.

The observed aggregate behavior resembled the non-truthful informative equi-

ANGLES, no homegrown stigmatization aversion is expected.
31Risk aversion might also have played a role. To avoid additional layer of complexity to our

already involved experimental instructions, we did not use binary lotteries (Roth and Malouf,
1979; Berg, Dickhaut and O’Brien, 1986) to induce risk neutrality. The respondents were
trading a certain sum from truthful responses for a risky prospect of lower probability assigned
to s. Given the high variations in elicited beliefs, risk aversion might have favored truthful
responses. Note, however, that this does not undermine the conclusion that the use of random
questions led to more truthful responses, as highly varied elicited beliefs were also observed in
the randomized response treatments; risk aversion was largely controlled for in the comparisons
between the two sets of response treatments.
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libria. The frequencies of “yes” by s-types to “Are you an s?” and by t-types

to “Are you a t?” were highly consistent with the predicted affirmative truth-

ful responses, where in both RandomLow and RandomHigh the frequencies were

close to 100%. In the cases where truthful responses were negative, randomiza-

tions between “yes” and “no” consistent with the informative equilibria generated

predictions that are within ±5% of the observed frequencies.32

It is instructive to reverse perspectives and try to determine which aversion

ratios, λ
ξ
, are implied by the observed response frequencies if one identifies those

frequencies with the mixing probabilities in an informative non-truthful equilib-

rium. In the case of RandomLow s responds to qt with “yes” with a frequency

of 0.16 and t responds to qs with “yes” with a frequency of 0.22. The implied

aversion ratio is approximately 0.2, compared to the induced ratio of 0.25. In the

case of RandomHigh s responds to qt with “yes” with a frequency of 0.33 and t

responds to qs with “yes” with a frequency of 0.37. The implied aversion ratio is

approximately 0.17, compared to the induced ratio of 0.125. While those aversion

ratios are not exact matches for the ones we were trying to induce, they are in

the right range and preserve the order of the intended ratios. We take this cali-

bration exercise as further evidence that the informative non-truthful equilibria

give a sensible account of behavior in our randomized response treatments.33

32For µs(n) > µs(y), we have that σ(y|s, qs) = σ(y|t, qt) = 1, and the remaining equilibrium
strategies satisfy σ(n|t, qs) ∈ (0, 1) and σ(n|s, qt) = [

√
25 + 80σ(n|t, qs) − 2σ(n|t, qs) − 5]/3 ∈

(0, 1] in RandomLow and σ(n|t, qs) ∈ (0, 1] and σ(n|s, qt) = [
√

225 + 160σ(n|t, qs)−2σ(n|t, qs)−
15]/3 ∈ (0, 1) in RandomHigh. The formulae for equilibrium strategies can generate σ(n|s, qt) ≈
0.89 (84% observed) and σ(n|t, qs) ≈ 0.73 (78% observed) in RandomLow and σ(n|s, qt) ≈ 0.63
(67% observed) and σ(n|t, qs) ≈ 0.67 (63% observed) in RandomHigh.

33One can also perform the calibration exercise for the direct response treatments. Consistent
with the over-communication we found there, the implied aversion ratios are markedly higher
than the induced ratios: In DirectLow the implied aversion ratio is 0.61, compared to an induced
ratio of 0.25. In DirectHigh the implied aversion ratio is 0.55, compared to an induced ratio
of 0.125. An interesting open question is how to reconcile the difference between the implied
aversion ratios for DRT and RRT. One possibility is that respondents develop homegrown
perceptions about ps. If they have an exaggerated sense of the difference between ps and pt,
i.e. perceive ps to be lower than it is, the implied aversion ratio increases. Another possibility
is that psychologically the RRT procedure might not feel safe, as John et al. (2013) have
suggested. Finally, it might be that truth-telling is more salient under DRT since there is a
more definite sense of what constitutes truth. The latter might be especially interesting from
an applied perspective, as it suggests a potentially adverse effect of RRT on lying aversion.
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5.2 Information-Eliciting Performance

The mutual information measures implied by our data are reported in Table

4. There we also report a decomposition of the difference between the DRT

and RRT mutual information measures into the contributions from randomizing

questions, which we refer to as “Noise,” the protective strategic response by t

types to randomizing questions, referred to as “Protective behavior of t,” and the

primary intended strategic effect of RRT—to induce s types to truthfully answer

with “no” in response to the question “Are you a t?”, which we refer to as the

“Positive Effect of RRT.”

Table 4: Mutual Information

DirectLow Noise Protective
Behavior of t

Positive
Effect of RRT

Remaining RandomLow

Session 1 0.134 0.039
Session 2 0.213 0.046
Session 3 0.080 0.017
Session 4 0.267 0.003

Mean 0.173 −0.171 +0.012 +0.023 −0.011 0.026

DirectHigh Noise Protective
Behavior of t

Positive
Effect of RRT

Remaining RandomHigh

Session 1 0.055 0.006
Session 2 0.012 0.027
Session 3 0.056 0.030
Session 4 0.198 0.009

Mean 0.080 −0.076 +0.036 +0.007 −0.029 0.018

Note: The figures are obtained by applying an alternative formula of mutual information,∑
P (r′|θ′)P (θ′) log

P (r′|θ′)
P (r′) , to the empirical counterparts (last 20 rounds aggregates) of P (θ′), P (qθ′ ), and

P (r′|qθ′ , θ′). The effects of noise are obtained by, starting with the mutual information in DRT, replacing P (qs)
and P (qt) in DRT with those in RRT. (In the same step, negation of the answer to qt is also used for the frequency
of responses to the unasked question qs in DRT, i.e., we assume that for DRT P (r′|qs, θ′) = 1 − P (r′|qt, θ′).)
The effects of types-t’s protective behavior are obtained by replacing P (r′|qs, t) in DRT with those in RRT. The
positive effects of RRT are obtained by replacing P (r′|qt, s) in DRT with those in RRT. The remaining effects
are obtained by replacing the remaining P (r′|·, ·) in DRT with those in RRT.

Theory predicts that for the parameters in questions RRT performs strictly

better than DRT. The direct response regime, however, dominates in the lab due

to the over-communication with DRT and under-communication with RRT. At

the same time, a comparative statics prediction from the theory was recovered in

the laboratory: relative to the direct response regime, the randomized response

regime performed better when there was stronger stigmatization aversion.

The decomposition of the difference of the mutual information measures for
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direct and randomized response reveals that the direct effect of randomizing ques-

tions (“Noise”) nearly completely eliminates the information gain from random-

ized response whereas the intended strategic effect of RRT (“Positive Effect of

RRT”) makes a positive, although small, contribution to informativeness.

6 Discussion and Conclusion

Randomness can be a source of plausible deniability. This has the potential to

improve information transmission, as demonstrated in the literature on strategic

communication through noisy channels. It remains an open question, however,

whether and how this potential can be translated into gains in applications.

Randomized response is an ideal starting point to begin the investigation of

this question. It relies on the same basic idea, that randomness shields the sender,

and it has been used with some success in the field. The idea to use randomness

to generate privacy protection while retaining the ability to obtain prevalence

estimates at the population level is ingeniously simple. It can be straightforwardly

modeled as a game and implemented in an experimental laboratory.

The theoretical analysis of the randomized-response game yields two prin-

cipal novel insights: (1) there are informative equilibria that are not truthful,

and (2) those equilibria can imply distorted and possibly invalid estimates of the

prevalence of the stigmatizing trait in the population. Non-truthful informative

equilibria are robust to standard belief-based refinements since the randomization

ensures that there are no off-equilibrium responses. Furthermore, they plausibly

express the focal principle of privacy protection. The model thus delivers that

there is no need for auxiliary explanations of observed non-compliance with ran-

domized response instructions. Non-truthful responses are entirely rational and

vary in a predictable fashion with incentives.

Our experimental findings are best accounted for by the informative but non-

truthful equilibria of the randomized-response game. Consistent with these equi-

libria, randomized response improves truth-telling but results in systematic de-

partures from full truth-telling for jeopardizing answers and distorted prevalence

estimates. While we find over-communication with direct questioning, consis-

tent with the experimental literature on strategic information transmission, we
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find under-communication with randomized response. Observed departures from

truthful responding tend to be rational, occur for jeopardizing answers, and re-

spond to changing incentives.

The research strategy we propose, to build fully specified game models of RRT

and to take them to the experimental laboratory, can be straightforwardly applied

to alternate versions of RRT. Any variant of RRT requires that there are answers

that result in less favorable posterior than prior beliefs about the respondent.

This creates incentives for non-compliance. Therefore, we expect that the key

message of our paper, that one should expect systematic non-compliance with

RRT instructions for jeopardizing answers, applies to all variants of RRT.

One might wish to mitigate this effect by designing RRT so that it minimally

moves posterior beliefs. Since this requires increasing the noise level it will have

to be accompanied by increasing sample size. Even this might not be enough, and

it might be worthwhile using the laboratory to investigate whether it is indeed

the case that responses become approximately truthful when truthful responding

is made nearly uninformative; in our version of RRT this would correspond to

letting the probability of asking each question converge to one half.

A key takeaway from our game analysis and lab implementation is that non-

compliance with RRT instructions is to be expected. For implementations of

randomized response in the field this suggests incorporating non-compliance into

the data analysis. A simple way of recognizing the possibility of non-compliance

would be to report an array of different prevalence estimates corresponding to

different assumed compliance rates. In addition, it will be important to continue

the current effort to estimate non-compliance rates (as, for example, in Cruyff,

van den Hout, van der Heijden and Böckenholt (2007)). This will involve de-

veloping appropriate identifying assumptions. Clark and Desharnais (1998), for

example, propose to estimate non-compliance rates using the assumption that

these rates do not vary with changes in the probability of asking each question.

Alternative identifying assumptions are possible and our model provides guidance

by relating compliance rates to fundamentals (aversion ratio) and design parame-

ters (the probabilities with which questions are asked) and by making qualitative

predictions about the form of noncompliance.
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Online Appendix A – Proofs

We list the following payoff profiles that will be used in the proofs.

U((s, qs, y), µs(y)) = U((t, qt, y), µs(y)) = λ− ξµs(y), (A.1)

U((s, qs, n), µs(n)) = U((t, qt, n), µs(n)) = −ξµs(n), (A.2)

U((s, qt, n), µs(n)) = U((t, qs, n), µs(n)) = λ− ξµs(n), (A.3)

U((s, qt, y), µs(y)) = U((t, qs, y), µs(y)) = −ξµs(y). (A.4)

Proof of Lemma 1. Suppose there is an equilibrium in which |µs(y)−µs(n)| >
λ
ξ

on the equilibrium path. If µs(y) − µs(n) > λ
ξ
, then −ξµs(n) > λ − ξµs(y)

and λ − ξµs(n) > −ξµs(y). Regardless of whether it is qs or qt, (A.1)–(A.4)

indicate that both s and t strictly prefer to respond with n. This implies that

µs(y) is not on the equilibrium path, a contradiction. If µs(y) − µs(n) < −λ
ξ
,

then λ− ξµs(y) > −ξµs(n) and −ξµs(y) > λ− ξµs(n). (A.1)–(A.4) then indicate

that both s and t strictly prefer to respond with y, which again leads to the

contradiction that µs(n) is not on the equilibrium path.

Proof of Proposition 1. We characterize all equilibria in the direct response

regime with q = qt. We first show that there exists no truthful equilibrium,

which follows immediately from Lemma 1. If in an equilibrium both s and t give

truthful responses with probability one, then |µs(y) − µs(n)| = 1. Given that
λ
ξ
∈ [0, 1), this contradicts that in any equilibrium |µs(y) − µs(n)| ≤ λ

ξ
on the

equilibrium path.

Note that in any informative equilibrium with q = qt, we must have that

µs(n) > µs(y); if µs(y) > µs(n), it follows from (A.3) and (A.4) that s strictly

prefers to respond with n, which implies that µs(n) ≥ µs(y), a contradiction.

With µs(n) > µs(y), it follows from (A.1) and (A.2) that t strictly prefers to re-

spond with y. Thus, in any informative equilibrium, t must give truthful response

with probability one and s must randomize between y and n. The indifference

of s between y and n implies, from (A.3) and (A.4), that λ = ξ[µs(n) − µs(y)].

Given that n is used exclusively by s, we have µs(y) = 1− λ
ξ
, which holds if and

only if σ(n|s) = 2 − ξ
λ
. Hence, if an informative equilibrium exists, it is unique.

Since ξ > λ ≥ 0, the requirement that σ(n|s) ∈ (0, 1) imposes the restriction
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that λ
ξ
> 1

2
. Thus, if λ

ξ
∈ (1

2
, 1), one can construct an informative equilibrium; if

an informative equilibrium exists, we must have λ
ξ
∈ (1

2
, 1).

In any uninformative equilibrium, either (a) only one response is used in

equilibrium or (b) both responses are used and µs(y) = µs(n) = 1
2
. In case (b),

it requires that σ(y|s) = σ(y|t) ∈ (0, 1), i.e., both s and t are indifferent between

y and n. And given that µs(y) = µs(n), they are indifferent if and only if λ = 0.

Thus, an uninformative equilibrium with σ(y|s) = σ(y|t) ∈ (0, 1) exists if and

only if λ
ξ

= 0.

Consider next case (a). Suppose both s and t respond with y with probability

one so that µs(y) = 1
2

on the equilibrium path. For this to constitute an equi-

librium, we require, from (A.1) and (A.2), that λ ≥ ξ[1
2
− µs(n)] for t and, from

(A.3) and (A.4), that ξ[µs(n)− 1
2
] ≥ λ for s, where µs(n) is an out-of-equilibrium

belief. Only the second inequality binds, and thus the out-of-equilibrium belief

required to support the equilibrium is that µs(n) ≥ λ
ξ

+ 1
2
. That µs(n) ∈ [0, 1]

imposes the restriction that λ
ξ
≤ 1

2
. Suppose next that both s and t respond

with n with probability one so that µs(n) = 1
2

on the equilibrium path. By a

similar argument, for this to constitute an equilibrium, we require that the out-of-

equilibrium belief µs(y) ≥ λ
ξ

+ 1
2
, which again imposes the restriction that λ

ξ
≤ 1

2
.

Thus, if λ
ξ
∈ [0, 1

2
], one can construct uninformative equilibria with outcomes

where either both types respond with y or both respond with n; for λ
ξ
∈ (0, 1

2
],

these are the only uninformative equilibrium outcomes. Conversely, if an unin-

formative equilibrium exists, we must have λ
ξ
∈ [0, 1

2
]. This also implies that for

any λ
ξ
∈ (1

2
, 1) there is no uninformative equilibrium and hence in that range the

unique informative equilibrium is the only equilibrium.

We next apply the D1 criterion to the two equilibrium outcomes in which only

one response is used. Let U∗(θ) be the equilibrium payoff of type-θ respondent.

For the equilibrium outcome in which both types respond with n, we have that

U∗(s) = λ− ξ
2

and U∗(t) = − ξ
2
. If types s and t deviate to y, their payoffs will be,

respectively, Ũ(s) = −ξµs(y) and Ũ(t) = λ−ξµs(y). Note that Ũ(s)−U∗(s) ≥ 0,

i.e., type s weakly prefers deviating to y, if and only if µs(y) ∈ [0, 1
2
− λ

ξ
]. On

the other hand, Ũ(t) − U∗(t) > 0, i.e., type t strictly prefers deviating to y, if

and only if µs(y) ∈ [0, 1
2

+ λ
ξ
). Note that if λ

ξ
> 0, [0, 1

2
− λ

ξ
] ⊂ [0, 1

2
+ λ

ξ
); s is

deleted for y under the D1 criterion, and thus the equilibrium outcome does not
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survive the selection criterion if λ
ξ
> 0. Turning to the equilibrium outcome in

which both types respond with y, note that type t weakly prefers to deviating to

n if and only if µs(n) ∈ [0, 1
2
− λ

ξ
] and type s strictly prefers to deviating to n if

and only if µs(n) ∈ [0, 1
2

+ λ
ξ
). By a similar argument, if λ

ξ
> 0, the D1 criterion

deletes t for n. The equilibrium outcome with both types responding with y can

be supported by the resulting belief that µs(n) = 1; the outcome thus survives

the criterion for λ
ξ
> 0. Finally, if λ

ξ
= 0, the D1 criterion puts no restriction on

the interviewer’s out-of-equilibrium beliefs, and thus both outcomes survive the

D1 criterion.

Proof of Proposition 2. We establish the result by verifying the following

claim, which characterizes all equilibria in the randomized response regime:

In the randomized response regime in which ps ∈ (0, 1
2
) ∪ (1

2
, 1),

1. there exist uninformative equilibria if and only if λ
ξ
∈ [0, 1

2
]; the class of

uninformative equilibria in which all types (s, qs), (t, qt), (s, qt) and (t, qs)

completely randomize between y and n in the same manner exists if and

only if λ
ξ

= 0;

2. there exists a truthful equilibrium if and only if ps ∈ [1
2
− λ

2ξ
, 1

2
+ λ

2ξ
]; and,

3. the set of non-truthful informative equilibria is completely described by the

following statements:

(a) there exists an informative equilibrium in which (s, qs) and (t, qt) al-

ways give a truthful response and

i. (s, qt) always gives a truthful response and (t, qs) randomizes be-

tween y and n if and only if 1
2
− λ

2ξ
< ps <

ξ
λ
− 1;

ii. (s, qt) randomizes between y and n and (t, qs) always gives a truth-

ful response if and only if ps <
1
2
− λ

2ξ
;

iii. (s, qt) randomizes between y and n and (t, qs) always gives a non-

truthful response if and only if ps <
ξ
λ
− 1 < 1;

iv. (s, qt) always give a truthful response and (t, qs) always gives a

non-truthful response if and only if ps = ξ
λ
− 1;
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v. (s, qt) and (t, qs) randomize between y and n if and only if ps <
ξ
λ
− 1;

(b) there exists an informative equilibrium in which (s, qt) and (t, qs) al-

ways give a truthful response and

i. (s, qs) always gives a truthful response and (t, qt) randomizes be-

tween y and n if and only if 2− ξ
λ
< ps <

1
2

+ λ
2ξ

;

ii. (s, qs) randomizes between y and n and (t, qt) always gives a truth-

ful response if and only if ps >
1
2

+ λ
2ξ

;

iii. (s, qs) randomizes between y and n and (t, qt) always gives a non-

truthful response if and only if ps > 2− ξ
λ
> 0;

iv. (s, qs) always gives a truthful response and (t, qt) always gives a

non-truthful response if and only if ps = 2− ξ
λ

;

v. (s, qs) and (t, qt) randomize between y and n if and only if ps >

2− ξ
λ

.

Given that the respondent has four types, (s, qs), (t, qt), (s, qt) and (t, qs) and

each type can either respond with y with probability one, respond with n with

probability one, or completely randomize between the two, there are in total 81

classes of strategy profiles as candidates for equilibrium. We proceed by either

characterizing the condition under which a class of strategy profiles constitutes

equilibria or eliminating one as equilibrium candidate, until we exhaust all 81

possibilities.

We begin with the uninformative equilibria in part 1 of the claim. In any

such equilibrium, either (a) only one response is used in equilibrium or (b) both

responses are used and µs(y) = µs(n) = 1
2
. In case (b), it requires that σ(y|s, qs) =

σ(y|t, qt) = σ(y|s, qt) = σ(y|t, qs) ∈ (0, 1), i.e., all types are indifferent between y

and n. And given that µs(y) = µs(n), they are indifferent if and only if λ = 0.

Thus, an uninformative equilibrium with σ(y|s, qs) = σ(y|t, qt) = σ(y|s, qt) =

σ(y|t, qs) ∈ (0, 1) exists if and only if λ
ξ

= 0. For case (a), consider first that all

types respond with y with probability one so that µs(y) = 1
2

on the equilibrium

path. For this to constitute an equilibrium, we require, from (A.1) and (A.2),

that λ ≥ ξ[1
2
− µs(n)] for (s, qs) and (t, qt) and, from (A.3) and (A.4), that

ξ[µs(n)− 1
2
] ≥ λ for (s, qt) and (t, qs), where µs(n) is an out-of-equilibrium belief.
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Only the second inequality binds, and thus the out-of-equilibrium belief required

to support the equilibrium is that µs(n) ≥ λ
ξ

+ 1
2
. That µs(n) ∈ [0, 1] imposes

the restriction that λ
ξ
≤ 1

2
. Consider next that all types respond with n with

probability one so that µs(n) = 1
2

on the equilibrium path. By a similar argument,

for this to constitute an equilibrium, we require that the out-of-equilibrium belief

µs(y) ≥ λ
ξ

+ 1
2
, which again imposes the restriction that λ

ξ
≤ 1

2
. Thus, if λ

ξ
∈ [0, 1

2
],

one can construct uninformative equilibria where either all types respond with y

or all respond with n; for λ
ξ
∈ (0, 1

2
], these are the only uninformative equilibria.

Conversely, if an uninformative equilibrium exists, we must have λ
ξ
∈ [0, 1

2
].

We are left with 78 possibilities. We proceed to eliminate candidates for

informative equilibria. Recall that in an informative equilibrium, y and n are used

with positive probability and µs(y) 6= µs(n). Note that whenever µs(y) 6= µs(n),

at least two types strictly prefer their truthful response that also results in lower

µs. If µs(n) > µs(y), it follows from (A.1) and (A.2) that σ(y|s, qs) = σ(y|t, qt) =

1. If µs(y) > µs(n), it follows from (A.3) and (A.4) that σ(y|s, qt) = σ(y|t, qs) = 0.

The condition that either σ(y|s, qs) = σ(y|t, qt) = 1 or σ(y|s, qt) = σ(y|t, qs) = 0

eliminates 63 classes of strategy profiles, leaving 15 distinct possibilities. Consider

that µs(n) > µs(y) so that σ(y|s, qs) = σ(y|t, qt) = 1. The interviewer’s beliefs

are

µs(n) =
(1− ps)(1− σ(y|s, qt))

ps(1− σ(y|t, qs)) + (1− ps)(1− σ(y|s, qt))
, (A.5)

µs(y) =
ps + (1− ps)σ(y|s, qt)

1 + psσ(y|t, qs) + (1− ps)σ(y|s, qt)
. (A.6)

If σ(y|s, qt) = 1, both (s, qs) and (s, qt) respond with y with probability one,

leading to the contradiction that µs(n) = 0. Thus, two additional classes of

strategy profiles, which prescribe σ(y|s, qs) = σ(y|t, qt) = σ(y|s, qt) = 1 coupled

with either σ(y|t, qs) = 0 or σ(y|t, qs) ∈ (0, 1), are ruled out. Consider next that

µs(y) > µs(n) so that σ(y|s, qt) = σ(y|t, qs) = 0. The interviewer’s beliefs are

µs(y) =
psσ(y|s, qs)

psσ(y|s, qs) + (1− ps)σ(y|t, qt)
, (A.7)

µs(n) =
1− ps + ps(1− σ(y|s, qs))

1 + ps(1− σ(y|s, qs)) + (1− ps)(1− σ(y|t, qt))
. (A.8)
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If σ(y|s, qs) = 0, both (s, qs) and (s, qt) respond with n with probability one,

leading to the contradiction that µs(y) = 0. Thus, two more classes of strategy

profiles, which prescribe σ(y|s, qt) = σ(y|t, qs) = σ(y|s, qs) = 0 coupled with

either σ(y|t, qt) = 1 or σ(y|t, qt) ∈ (0, 1), are further eliminated.

The rest of the proof verifies and characterizes the remaining 11 classes of

strategy profiles as informative equilibria. Consider first the truthful equilibrium

in part 2 of the claim, in which σ(y|s, qs) = σ(y|t, qt) = 1 and σ(y|s, qt) =

σ(y|t, qs) = 0. The resulting interviewer’s beliefs are µs(y) = ps and µs(n) =

1 − ps. Suppose that ps <
1
2
. It follows from (A.1) and (A.2) that (s, qs) and

(t, qt) strictly prefer y to n. For (s, qt) and (t, qs) to weakly prefer n to y, it

follows from (A.3) and (A.4) that we require ps ≥ 1
2
− λ

2ξ
. Suppose next that

ps >
1
2
. It follows from (A.3) and (A.4) that (s, qt) and (t, qs) strictly prefer n

to y. For (s, qs) and (t, qt) to weakly prefer y to n, it follows from (A.1) and

(A.2) that we require ps ≤ 1
2

+ λ
2ξ

. Truthful equilibria thus exist if and only if

ps ∈ [1
2
− λ

2ξ
, 1

2
+ λ

2ξ
].

We proceed to non-truthful informative equilibria. We divide the remaining

10 cases according to the magnitudes of the interviewer’s beliefs. Consider first

that µs(n) > µs(y). The strategies σ(y|s, qs) = σ(y|t, qt) = 1 are to be coupled

with σ(y|s, qt) ∈ [0, 1) and σ(y|t, qs) ∈ [0, 1], accounting for five remaining classes

of strategy profiles. All of them require, from (A.3) and (A.4), that λ = ξ[µs(n)−
µs(y)] > 0. Substituting (A.5) and (A.6) into λ = ξ[µs(n) − µs(y)] and solving

for σ(y|s, qt), we obtain

σ(y|s, qt) =
ξ ±

√
4λ2 − 4λξ[1− 2ps(1− σ(y|t, qs))] + ξ2 − 2λpsσ(y|t, qs)

2λ(1− ps)
.

Note that for 0 ≤ λ < ξ,
√

4λ2 − 4λξ[1− 2ps(1− σ(y|t, qs))] + ξ2−2λpsσ(y|t, qs)
≥
√

(2λ− ξ)2 − 2λps. Thus, we have that

ξ +
√

4λ2 − 4λξ[1− 2ps(1− σ(y|t, qs))] + ξ2 − 2λpsσ(y|t, qs)
2λ(1− ps)

≥
ξ +

√
(2λ− ξ)2 − 2λps
2λ(1− ps)

.
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Given that
ξ+
√

(2λ−ξ)2−2λps

2λ(1−ps) = 1 for 2λ − ξ ≥ 0 and
ξ+
√

(2λ−ξ)2−2λps

2λ(1−ps) > 1 for

2λ− ξ < 0, the above solution for σ(y|s, qt) is not relevant (σ(y|s, qt) = 1 is ruled

out above). The relevant solution is thus

σ(y|s, qt) =
ξ −

√
4λ2 − 4λξ[1− 2ps(1− σ(y|t, qs))] + ξ2 − 2λpsσ(y|t, qs)

2λ(1− ps)
.

(A.9)

Consider the following five cases, which correspond to part 3(a) of the claim:

1. Suppose σ(y|s, qt) = 0. For σ(y|t, qs) ≥ 0, (A.9) reduces to σ(y|t, qs) =√
4λ2−4λξ(1−2ps)+ξ2−ξ

2psλ
. Thus, there exists an equilibrium with σ(y|s, qs) =

σ(y|t, qt) = 1, σ(y|s, qt) = 0 and σ(y|t, qs) ∈ (0, 1) if and only if, for ps ∈
(0, 1

2
) ∪ (1

2
, 1), 0 <

√
4λ2−4λξ(1−2ps)+ξ2−ξ

2psλ
< 1 or equivalently 1

2
− λ

2ξ
< ps <

ξ
λ
− 1.

2. Suppose σ(y|t, qs) = 0. Solution (A.9) reduces to

σ(y|s, qt) =
ξ −

√
4λ2 − 4λξ(1− 2ps) + ξ2

2λ(1− ps)
.

Thus, there exists an equilibrium with σ(y|s, qs) = σ(y|t, qt) = 1, σ(y|s, qt) ∈
(0, 1) and σ(y|t, qs) = 0 if and only if, for ps ∈ (0, 1

2
) ∪ (1

2
, 1),

0 <
ξ−
√

4λ2−4λξ(1−2ps)+ξ2

2λ(1−ps) < 1. Note that for 0 ≤ λ < ξ and ps ∈ (0, 1),

ξ−
√

4λ2−4λξ(1−2ps)+ξ2

2λ(1−ps) is strictly decreasing in ps. Thus, we have that

ξ−
√

4λ2−4λξ(1−2ps)+ξ2

2λ(1−ps) <
ξ−
√

(2λ−ξ)2

2λ
. Note that

ξ−
√

(2λ−ξ)2

2λ
< 1 for 2λ− ξ > 0

and
ξ−
√

(2λ−ξ)2

2λ
= 1 for 2λ− ξ ≤ 0. Thus,

ξ−
√

4λ2−4λξ(1−2ps)+ξ2

2λ(1−ps) < 1 is satis-

fied for all parameter values. The remaining inequality
ξ−
√

4λ2−4λξ(1−2ps)+ξ2

2λ(1−ps) >

0 reduces to ps <
1
2
− λ

2ξ
.

3. Suppose σ(y|t, qs) = 1. Solution (A.9) reduces to σ(y|s, qt) =
ξ−
√

(2λ−ξ)2−2λp

2λ(1−ps) .

Note that if 2λ− ξ ≤ 0, σ(y|s, qt) = 1, which is ruled out above. This im-

plies that for σ(y|s, qt) < 1, we must have 2λ − ξ > 0, in which case

σ(y|s, qt) = 1
1−ps

(
ξ
λ
− 1− ps

)
. Thus, there exists an equilibrium with

σ(y|s, qs) = σ(y|t, qt) = σ(y|t, qs) = 1 and σ(y|s, qt) ∈ (0, 1) if and only
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if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1), 0 < 1

1−ps

(
ξ
λ
− 1− ps

)
< 1 or equivalently

ps <
ξ
λ
− 1 < 1.

4. Suppose σ(y|s, qt) = 0 and σ(y|t, qs) = 1. Solution (A.9) reduces to ξ −√
(2λ− ξ)2 − 2psλ = 0. Note that if 2λ − ξ ≤ 0, ps = 1, which violates

ps < 1 for randomized response. This implies that for the stated strategy

profile to constitute an equilibrium in the randomized response regime, we

must have 2λ − ξ > 0, in which case ps = ξ
λ
− 1. Thus, there exists an

equilibrium with σ(y|s, qs) = σ(y|t, qt) = σ(y|t, qs) = 1 and σ(y|s, qt) = 0 if

and only if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1), ps = ξ

λ
− 1.

5. It can be verified from (A.9) that σ(y|s, qt) ≥ 1 if and only if 2λ − ξ ≤ 0

and σ(y|t, qs) = 1. Thus, if σ(y|t, qs) ∈ (0, 1), we must have σ(y|s, qt) < 1.

On the other hand, σ(y|s, qt) > 0 if and only if

ξ −
√

4λ2 − 4λξ[1− 2ps(1− σ(y|t, qs))] + ξ2 − 2psλσ(y|t, qs) > 0,

which can be verified to hold for σ(y|t, qs) ∈ (0, 1) if and only if ps <
ξ
λ
− 1. Thus, there exists an equilibrium with σ(y|s, qs) = σ(y|t, qt) = 1,

σ(y|s, qt) ∈ (0, 1) and σ(y|t, qs) ∈ (0, 1) if and only if, for ps ∈ (0, 1
2
)∪ (1

2
, 1),

ps <
ξ
λ
− 1.

Consider next that µs(y) > µs(n). The strategies σ(y|s, qt) = σ(y|t, qs) = 0

are to be coupled with σ(y|s, qs) = (0, 1] and σ(y|t, qt) ∈ [0, 1], accounting for the

last five cases. All of them require, from (A.1) and (A.2), that λ = ξ[µs(y) −
µs(n)] > 0. Substituting (A.7) and (A.8) into λ = ξ[µs(y) − µs(n)] and solving

for σ(y|s, qs), we obtain

σ(y|s, qs) =
−ξ ±

√
4λ2 − 4λξ[1− 2(1− ps)σ(y|t, qt)] + ξ2 + 2λ[1− (1− ps)σ(y|t, qt)]

2psλ
.

(A.10)

Note that for 0 ≤ λ < ξ, −
√

4λ2 − 4λξ[1− 2(1− ps)σ(y|t, qt)] + ξ2 + 2λ[1− (1−
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ps)σ(y|t, qt)] ≤ −
√

(2λ− ξ)2 + 2λ. Thus, we have that

−ξ −
√

4λ2 − 4λξ[1− 2(1− ps)σ(y|t, qt)] + ξ2 + 2λ[1− (1− ps)σ(y|t, qt)]
2psλ

≤
−ξ −

√
(2λ− ξ)2 + 2λ

2psλ
.

Given that
−ξ−
√

(2λ−ξ)2+2λ

2psλ
= 0 for 2λ − ξ ≥ 0 and

−ξ−
√

(2λ−ξ)2+2λ

2psλ
< 0 for

2λ− ξ < 0, the above solution for σ(y|s, qs) is not relevant (σ(y|s, qs) = 0 is ruled

out above). The relevant solution is thus

σ(y|s, qs) =
−ξ +

√
4λ2 − 4λξ[1− 2(1− ps)σ(y|t, qt)] + ξ2 + 2λ[1− (1− ps)σ(y|t, qt)]

2psλ
.

(A.11)

Consider the following five cases, which correspond to part 3(b) of the claim:

1. Suppose σ(y|s, qs) = 1. For σ(y|t, qt) ≤ 1, we have (A.11) reducing to

σ(y|t, qt) = 1 +
ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2λ(1−ps) . Thus, there exists an equilibrium with

σ(y|s, qt) = σ(y|t, qs) = 0, σ(y|s, qs) = 1 and σ(y|t, qt) ∈ (0, 1) if and only

if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1), 0 < 1 +

ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2λ(1−ps) < 1 or equivalently

2− ξ
λ
< p < 1

2
+ λ

2ξ
.

2. Suppose σ(y|t, qt) = 1. Solution (A.11) reduces to σ(y|s, qs) = 1 −
ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2psλ
. Thus, there exists an equilibrium with σ(y|s, qt) =

σ(y|t, qs) = 0, σ(y|t, qt) = 1 and σ(y|s, qs) ∈ (0, 1) if and only if, for ps ∈
(0, 1

2
) ∪ (1

2
, 1), 0 < 1 − ξ−

√
4λ2+4λξ(1−2ps)+ξ2

2psλ
< 1. Note that for 0 ≤ λ < ξ

and ps ∈ (0, 1), 1 − ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2psλ
is strictly decreasing in ps. Thus,

we have that 1 − ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2psλ
> 1 − ξ−

√
(2λ−ξ)2

2λ
. Note that 1 −

ξ−
√

(2λ−ξ)2

2λ
> 0 for 2λ − ξ > 0 and 1 − ξ−

√
(2λ−ξ)2

2λ
= 0 for 2λ − ξ ≤ 0.

Thus, 1− ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2psλ
> 0 is satisfied for all parameter values. The

remaining inequality 1− ξ−
√

4λ2+4λξ(1−2ps)+ξ2

2psλ
< 1 reduces to ps >

1
2

+ λ
2ξ

.

3. Suppose σ(y|t, qt) = 0. Solution (A.11) reduces to σ(y|s, qs) =
2λ−ξ+

√
(2λ−ξ)2

2psλ
.

Note that if 2λ−ξ ≤ 0, σ(y|s, qs) = 0, which is ruled out above. This implies
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that for σ(y|s, qs) > 0, we must have 2λ− ξ > 0, in which case σ(y|s, qs) =
2λ−ξ
psλ

. Thus, there exists an equilibrium with σ(y|s, qt) = σ(y|t, qs) = 0,

σ(y|t, qt) = 0 and σ(y|s, qs) ∈ (0, 1) if and only if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1),

0 < 2λ−ξ
pλ

< 1 or equivalently ps > 2− ξ
λ
> 0.

4. Suppose σ(y|s, qs) = 1 and σ(y|t, qt) = 0. Solution (A.11) reduces to 2λ −
ξ +

√
(2λ− ξ)2 − 2pλ = 0. Note that if 2λ− ξ ≤ 0, ps = 0, which violates

ps > 0 for randomized response. This implies that for the stated strategy

profile to constitute an equilibrium in the randomized response regime, we

must have 2λ − ξ > 0, in which case ps = 2 − ξ
λ
. Thus, there exists an

equilibrium with σ(y|s, qt) = σ(y|t, qs) = σ(y|t, qt) = 0 and σ(y|s, qs) = 1 if

and only if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1), ps = 2− ξ

λ
.

5. It can be verified from (A.11) that σ(y|s, qs) ≤ 0 if and only if 2λ − ξ ≤ 0

and σ(y|t, qt) = 0. Thus, if σ(y|t, qt) ∈ (0, 1), we must have σ(y|s, qs) > 0.

On the other hand, σ(y|s, qs) < 1 if and only if 2λ(1−ps)(1−σ(y|t, qt))−ξ+√
4λ2 − 4λξ[1− 2(1− ps)σ(y|t, qt)] + ξ2 < 0, which can be verified to hold

for σ(y|t, qt) ∈ (0, 1) if and only if ps > 2− ξ
λ
. Thus, there exists an equilib-

rium with σ(y|s, qt) = σ(y|t, qs) = 0, σ(y|s, qs) ∈ (0, 1) and σ(y|t, qt) ∈ (0, 1)

if and only if, for ps ∈ (0, 1
2
) ∪ (1

2
, 1), ps > 2− ξ

λ
.
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Online Appendix B – Mutual Information

B.1 Characterizations

Recall that in the direct response regime, the uninformative and the informative

equilibria exist under complementary ranges of λ
ξ
∈ [0, 1) divided by 1

2
. Accord-

ingly, we have the following evaluation:

Proposition 3. In the direct response regime, the maximal mutual information

allowed by any equilibrium is

ĪD(λ
ξ
) =

0, if λ
ξ
∈ (0, 1

2
],

1 + 1
2
[( ξ
λ
− 1) log(1− λ

ξ
) + log λ

ξ
], if λ

ξ
∈ (1

2
, 1).

Given our specification that s and t are equally likely, the entropy of θ is 1,

which is the maximum entropy possible. The uncertainty that remains for the

interviewer in the informative equilibrium is therefore −1
2
[( ξ
λ
− 1) log(1 − λ

ξ
) +

log λ
ξ
] ∈ (0, 1).

With the continuum of informative equilibria, the determination of the max-

imal performance is less straightforward for the randomized response regime. To

facilitate the exposition, we start with the following lemma:

Lemma 2. In the randomized response regime,

1. for λ
ξ
∈ (1

2
, 1) and probability of qs set at ps = ξ−λ

λ
or ps = 1 − ξ−λ

λ
, there

exist equilibria whose mutual information coincides with ĪD(λ
ξ
); and,

2. for λ
ξ
∈ (0, 1), the maximal mutual information among the truthful equilibria

is ĪR−T (λ
ξ
) = 1

2
[(1− λ

ξ
) log(1− λ

ξ
) + (1 + λ

ξ
) log(1 + λ

ξ
)], achieved at ps = ξ−λ

2ξ

or ps = 1− ξ−λ
2ξ

.

Furthermore, there exists a c ≈ 0.743 such that ĪR−T (λ
ξ
) > ĪD(λ

ξ
) for λ

ξ
∈ (0, c)

and ĪR−T (λ
ξ
) ≤ ĪD(λ

ξ
) for λ

ξ
∈ [c, 1) with strict inequality except at λ

ξ
= c.

In the direct response regime, the mutual information is determined by the

respondent’s strategy, which, in the informative equilibrium with q = qt, con-

sists of truthful response by type t, σ(y|t) = 1, and randomization by type s,
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σ(n|s) = 2 − ξ
λ
. In the randomized response regime, the probabilities of the

questions also contribute to determining the mutual information. This suggests

the possibility that the non-degenerate question probabilities may serve as an

exogenous randomization to mimic the equilibrium randomization in the direct

response regime, resulting in the same set of response probabilities and posteriors

that enter into the computation of mutual information. The first part of Lemma 2

says that this is indeed the case. The analysis boils down to finding ps, σ(y|t, qs),
σ(y|t, qs), σ(n|s, qs), and σ(n|s, qt) in the randomized response regime so that

psσ(y|t, qs) + (1 − p)σ(y|t, qt) = 1 and psσ(n|s, qs) + (1 − p)σ(n|s, qt) = 2 − ξ
λ
.

These conditions are satisfied by ps = ξ−λ
λ

coupled with the strategy σ(y|t, qs) =

σ(y|t, qt) = σ(n|s, qt) = 1 and σ(n|s, qs) = 0 which form an equilibrium in the

randomized response regime if and only if ps is at that exact value. The two

equilibria in the two different response regimes result in the same posteriors; this

is no coincidence because the incentive conditions behind one equilibrium carry

over to the other.

The intuition behind the second part of Lemma 2 can be easily seen from

the fact that when ps = 1
2
, the mid-point of [ ξ−λ

2ξ
, 1− ξ−λ

2ξ
] and the uninteresting

case which we ruled out by definition, no information is transmitted regardless of

how the respondent responds; the interviewer’s posteriors will remain at 1
2
. More

information is transmitted, and thus the mutual information is higher, when ps

moves away from 1
2
. Given the constraint that the truthful equilibria can be

supported only for ps ∈ [ ξ−λ
2ξ
, 1 − ξ−λ

2ξ
], the maximal mutual information of this

class of equilibria is achieved when ps is at the boundaries of the interval.

We proceed to characterize the maximal mutual information under the ran-

domized response regime, covering all equilibria:

Proposition 4. In the randomized response regime, the maximal mutual infor-

mation allowed by any equilibrium is

ĪR(λ
ξ
) =

1
2
[(1− λ

ξ
) log(1− λ

ξ
) + (1 + λ

ξ
) log(1 + λ

ξ
)], if λ

ξ
∈ (0, c),

1 + 1
2
[( ξ
λ
− 1) log(1− λ

ξ
) + log λ

ξ
], if λ

ξ
∈ [c, 1),

where c ≈ 0.743.
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The essence behind Proposition 4 is that the two values of mutual information

in Lemma 2 form an upper envelope of the mutual information of all equilibria

in the randomized response regime. The following corollary, which compares

the maximal information-eliciting performance of the two response regimes, is

immediate:

Corollary 2. For given λ
ξ
∈ (0, 1), the maximal mutual information under

the randomized response regime weakly dominates that under the direct response

regime, with strict dominance for λ
ξ
∈ (0, c), where c ≈ 0.743.

B.2 Proofs

Proof of Proposition 3. From items 3 and 4 of Proposition 1, if λ
ξ
∈ [0, 1

2
],

any equilibrium must be uninformative. The interviewer’s posterior beliefs are the

same as the prior, which implies that H(θ|r) = H(θ) = 1, and thus I(θ; r) = 0.

Note that for the equilibria with common response, the out-of-equilibrium beliefs

do not enter into the calculation because for the unused response r′, Pr(r′) = 0.

From item 2 of Proposition 1, if λ
ξ
∈ (1

2
, 1), in the unique equilibrium σ(y|t) =

1 and σ(y|s) = ξ
λ
−1, and thus Pr(y) = ξ

2λ
. Bayes’ rule implies that µs(y) = 1− λ

ξ

and µs(n) = 1. Accordingly, H(θ|r) = −( ξ
2λ

)[(1− λ
ξ
) log(1− λ

ξ
) + λ

ξ
log λ

ξ
], where

0 log 0 = 0 is used. Thus, for the unique equilibrium under λ
ξ
∈ (1

2
, 1), I(θ|r) =

1 + 1
2
[( ξ
λ
− 1) log(1 − λ

ξ
) + log λ

ξ
]. Note finally that while the above argument is

made assuming q = qt, the case for q = qs is symmetric.

Proof of Lemma 2. For item 1, note that from Proposition 3, we have that for
λ
ξ
∈ (1

2
, 1), Ī(λ

ξ
) = 1 + 1

2
[( ξ
λ
− 1) log(1− λ

ξ
) + log λ

ξ
], which, with q = qt, is derived

from the equilibrium in which σ(y|t) = 1 and σ(y|s) = ξ
λ
−1. The strategy profile

implies the following components for mutual information, µs(y) = 1−λ
ξ
, µs(n) = 1

and Pr(y) = ξ
2λ

. We first show that there is an equilibrium in the randomized

response regime that has the same components. Consider the equilibrium in

which σ(y|s, qs) = σ(y|t, qt) = σ(y|t, qs) = 1 and σ(y|s, qt) = 0, which exists if

and only if ps = ξ
λ
− 1 and λ

ξ
> 1

2
. It is immediate from (A.5) that µs(n) = 1,

from (A.6) that µs(y) = ps
1+ps

= 1− λ
ξ
, and that Pr(y) = 1

2
(1 + p) = ξ

2λ
. We show

next that there is another equilibrium in the randomized response regime that
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has the same components up to rotation of the responses, and thus has the same

mutual information. Consider the equilibrium in which σ(y|s, qt) = σ(y|t, qs) =

σ(y|t, qt) = 0 and σ(y|s, qs) = 1, which exists if and only if ps = 2− ξ
λ

and λ
ξ
> 1

2
.

It is immediate from (A.7) that µs(y) = 1, from (A.8) that µs(n) = 1−ps
2−ps = 1− λ

ξ
,

and that Pr(n) = 1
2
(2−ps) = ξ

2λ
. Thus, for λ

ξ
∈ (1

2
, 1) and ps ∈ { ξλ−1, 2− ξ

λ
}, there

exist equilibria in the randomized response regime whose mutual information is

1 + 1
2
[( ξ
λ
− 1) log(1− λ

ξ
) + log λ

ξ
].

For item 2, consider the truthful equilibria in which σ(y|s, qs) = σ(y|t, qt) = 1

and σ(y|s, qt) = σ(y|t, qs) = 0, which exist if and only if ps ∈ [1
2
− λ

2ξ
, 1

2
+ λ

2ξ
]. The

strategy profiles imply that µs(y) = ps, µs(n) = 1 − ps, and Pr(y) = Pr(n) = 1
2
.

The resulting mutual information is thus 1 +ps log ps + (1−ps) log(1−ps), which

attains its minimum at ps = 1
2

and is strictly convex in ps. This implies that for

ps ∈ [1
2
− λ

2ξ
, 1

2
+ λ

2ξ
], the mutual information attains maxima when ps ∈ {1

2
−

λ
2ξ
, 1

2
+ λ

2ξ
}. Substituting ps ∈ {1

2
− λ

2ξ
, 1

2
+ λ

2ξ
} into 1+ps log ps+(1−ps) log(1−ps),

we obtain ĪR−T (λ
ξ
) = 1

2
[(1− λ

ξ
) log(1− λ

ξ
) + (1 + λ

ξ
) log(1 + λ

ξ
)].

Finally, we compare the two values of mutual information, 1
2
[(1 − λ

ξ
) log(1 −

λ
ξ
)+(1+ λ

ξ
) log(1+ λ

ξ
)] and 1+ 1

2
[( ξ
λ
−1) log(1− λ

ξ
)+log λ

ξ
]. We define, subtracting

the latter from the former, ∆Ī(λ
ξ
) = 1

2
[(2− λ

ξ
− ξ

λ
) log(1− λ

ξ
)+(1+ λ

ξ
) log(1+ λ

ξ
)−

log λ
ξ
] − 1 for λ

ξ
= [1

2
, 1], using the fact that the expression is well-defined at the

endpoints of the interval [1
2
, 1]. Note that ∆Ī(1

2
) = 3

4
log 3−1 > 0, ∆Ī(1) = 0, and

d∆Ī(λ
ξ

)

d(λ
ξ

)
=

[1−(λ
ξ

)2] ln(1−λ
ξ

)+(λ
ξ

)2 ln(1+λ
ξ

)

(λ
ξ

)2 ln 4
> 0 at λ

ξ
= 1. Hence, there exists x ∈ (0, 1

2
)

for which ∆Ī(x) < 0, and, by the intermediate value theorem, there exists a

c ∈ (1
2
, 1) with ∆Ī(c) = 0. Since

d2∆Ī(λ
ξ

)

d(λ
ξ

)2 = − (λ
ξ

)(1+ 2λ
ξ

)+2(1+λ
ξ

) ln(1−λ
ξ

)

(λ
ξ

)3(1+λ
ξ

) ln 4
> 0 for

λ
ξ
∈ [1

2
, 1], this c is unique. It can be verified numerically that c ≈ 0.743.

Proof of Proposition 4. We solve a constrained maximization problem, where

the objective function is the mutual information and the constraint comes from

the restriction of equilibria, i.e., the maximal belief differential that |µs(y) −
µs(n)| ≤ λ

ξ
(Lemma 1). Since our objective is to find the maximal mutual in-

formation allowed by any equilibria in the randomized response regime, it fol-

lows from Lemma 2 that for truthful equilibria we can focus on the cases where

ps ∈ {1
2
− λ

2ξ
, 1

2
+ λ

2ξ
}, which imply that |µs(y)−µs(n)| = λ

ξ
; for the other equilibria
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in which at least two types randomize between responses, the indifference also

requires that |µs(y)− µs(n)| = λ
ξ
. Accordingly, for our purpose it is without loss

of generality to consider that the constraint binds.

The objective function is

I(θ; r) = 1+

[
Pr(y|s) + Pr(y|t)

2

]
(µs(y) log µs(y) + [1− µs(y)] log[1− µs(y)])

+

[
Pr(n|s) + Pr(n|t)

2

]
(µs(n) log µs(n) + [1− µs(n)] log[1− µs(n)]).

(B.1)

Note that as a function, (B.1) has six variables. We use the fact that these are

probabilities to reduce the number of variables. First of all, by Bayes’ rule, we

have that

µs(y) =
Pr(y|s)

Pr(y|s) + Pr(y|t)
⇔ Pr(y|s) + Pr(y|t) =

Pr(y|s)
µs(y)

, (B.2)

µs(n) =
Pr(n|s)

Pr(n|s) + Pr(n|t)
⇔ Pr(n|s) + Pr(n|t) =

Pr(n|s)
µs(n)

. (B.3)

Substituting (B.2) and (B.3) into (B.1), we obtain

I(θ; r) = 1+

[
Pr(y|s)
2µs(y)

]
(µs(y) log µs(y) + [1− µs(y)] log[1− µs(y)])

+

[
Pr(n|s)
2µs(n)

]
(µs(n) log µs(n) + [1− µs(n)] log[1− µs(n)])].

(B.4)

We use the fact that Pr(n|·) = 1−Pr(y|·) to further eliminate Pr(n|s) and µs(n).

Note that (B.3) can be rewritten as

µs(n) =
1− Pr(y|s)

2− [Pr(y|s) + Pr(y|t)]
=
µs(y)[1− Pr(y|s)]
2µs(y)− Pr(y|s)

, (B.5)

where in the second equality we use (B.2) for Pr(y|s) + Pr(y|t). Using (B.5) and
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the fact that Pr(n|s)
2µs(n)

= 1− Pr(y|s)
2µs(y)

, (B.4) becomes

I(θ; r) = 1+

[
Pr(y|s)
2µs(y)

]
(µs(y) log µs(y) + [1− µs(y)] log[1− µs(y)])

+

[
1− Pr(y|s)

2µs(y)

] [(
µs(y)[1− Pr(y|s)]
2µs(y)− Pr(y|s)

)
log

(
µs(y)[1− Pr(y|s)]
2µs(y)− Pr(y|s)

)
+

(
1− µs(y)[1− Pr(y|s)]

2µs(y)− Pr(y|s)

)
log

(
1− µs(y)[1− Pr(y|s)]

2µs(y)− Pr(y|s)

)]
.

(B.6)

Finally, we eliminate Pr(y|s) by using the belief constraint. Without loss of

generality, we consider the case where µs(n) > µs(y) so that the constraint is

µs(n)− µs(y) = λ
ξ
. Using (B.5), the constraint becomes

µs(y)[1− Pr(y|s)]
2µs(y)− Pr(y|s)

− µs(y) =
λ

ξ
⇔ Pr(y|s) = µs(y)

(
ξ

λ

)(
2

[
λ

ξ
+ µs(y)

]
− 1

)
.

(B.7)

Substituting (B.7) into (B.6), we obtain the following function in terms of µs(y)

only:

I(θ; r) =Î(µs(y))

=1 +

(
1− ξ

2λ
[1− 2µs(y)]

)
(µs(y) log µs(y) + [1− µs(y)] log[1− µs(y)])

+

(
ξ

2λ
[1− 2µs(y)]

)[(
µs(y) +

λ

ξ

)
log

(
µs(y) +

λ

ξ

)
+

(
1− µs(y)− λ

ξ

)
log

(
1− µs(y)− λ

ξ

)]
.

(B.8)

Note that there are also the box constraints that µs(y) ∈ [0, 1] and µs(n) ∈
[0, 1]. And given the belief constraint, these box constraints are satisfied if and

only if µs(y) ∈ [0, 1− λ
ξ
]. Thus, our maximization problem is

Max
µs(y)∈[0,1−λ

ξ
]
Î(µs(y)).

Note that Î(·) is symmetric at 1
2

(
1− λ

ξ

)
, i.e., Î

(
1
2

(
1− λ

ξ

)
+x
)

= Î
(

1
2

(
1− λ

ξ

)
−x
)
.
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The first-order condition for an extremum is[
1− 2λ

ξ
− 4µs(y)

]
ln

(
µs(y) + λ

ξ

µs(y)

)
=

[
3− 2λ

ξ
− 4µs(y)

]
ln

(
1− µs(y)− λ

ξ

1− µs(y)

)
.

(B.9)

Equation (B.9) is satisfied at the point of symmetry, µs(y) = 1
2

(
1− λ

ξ

)
, which is

the mid-point of the range [0, 1− λ
ξ
]. The second derivative of Î(µs(y)) is

Î ′′(µs(y)) =

1−2µs(y)

2(µs(y)+λ
ξ

)(1−µs(y)−λ
ξ

)
− 1−2[µs(y)+λ

ξ
]

2µs(y)[1−µs(y)]
− 2 ln

([
1−µs(y)
µs(y)

][
µs(y)+λ

ξ

1−µs(y)−λ
ξ

])
λ
ξ

ln 2
.

It can be verified that

Î ′′(1
2
(1− λ

ξ
)) =

4

[
λ
ξ

(1−λ
ξ

)(1+λ
ξ

)
+ ln

(
1−λ

ξ

1+λ
ξ

)]
λ
ξ

ln 2
T 0 for

λ

ξ
T d,

where d ≈ 0.796. Thus, µs(y) = 1
2
(1 − λ

ξ
) corresponds to a local maximum for

λ
ξ
< d and a local minimum for λ

ξ
> d.

We further derive the third derivative:

Î ′′′(µs(y)) =
1

([µs(y)][1− µs(y)][µs(y) + λ
ξ
][1− µs(y)− λ

ξ
])2 ln 4

×
(

1− 2µs(y)− λ

ξ

)[
2

(
λ

ξ

)3

[1− 2µs(y)]

−3

(
λ

ξ

)2

(1− 2µs(y)[1− µs(y)])

+

(
λ

ξ

)
(1− 2µs(y)(2− µs(y)[3− 2µs(y)])

+2µs(y)[1− µs(y)](1− µs(y)[1− µs(y)])

]
.

(B.10)

We evaluate the values of the third derivative for λ
ξ
∈ [0, 1), which in turns allows

us to infer the properties of the second derivative and to establish the global

maxima of the objective function.
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Solving Î ′′′(µs(y)) = 0 gives three real solutions:

µ̂s(y) =
1

2

1− λ

ξ
−

√√√√
2

√
4

(
λ

ξ

)4

−
(
λ

ξ

)2

+ 1− 3

(
λ

ξ

)2

− 1

 , (B.11)

µ̄s(y) =
1

2

(
1− λ

ξ

)
, (B.12)

µ̃s(y) =
1

2

1− λ

ξ
+

√√√√
2

√
4

(
λ

ξ

)4

−
(
λ

ξ

)2

+ 1− 3

(
λ

ξ

)2

− 1

 . (B.13)

We first consider λ
ξ
∈ [0, 1

2
]. Note that for λ

ξ
∈ [0, 1

2
], µ̄s(y) = 1

2
(1 − λ

ξ
) in (B.12)

is the only point in (0, 1− λ
ξ
) at which the third derivative vanishes. Evaluating

the expression in (B.10) for λ
ξ
∈ [0, 1

2
] then gives that Î ′′′(µs(y)) T 0 for µs(y) S

1
2
(1 − λ

ξ
). And for λ

ξ
∈ [0, 1

2
], limµs(y)→0 Î

′′(µs(y)) = limµs(y)→(1−λ
ξ

) Î
′′(µs(y)) =

−∞. Accordingly, with 1
2
< d, for λ

ξ
∈ [0, 1

2
], Î ′′(µs(y)) ≤ Î ′′(1

2
(1− λ

ξ
)) < 0 for all

µs(y) ∈ [0, 1 − λ
ξ
]. Thus, Î(µs(y)) is strictly concave on [0, 1 − λ

ξ
] for λ

ξ
∈ [0, 1

2
],

and µs(y) = 1
2
(1− λ

ξ
) corresponds to a global maximum for λ

ξ
∈ [0, 1

2
].

We consider next λ
ξ
∈ [
√

3/7, 1]. Note that for λ
ξ
∈ (
√

3/7, 1), µ̄s(y) = 1
2
(1−λ

ξ
)

in (B.12) is the only point in [0, 1 − λ
ξ
] at which the third derivative vanishes.

And for λ
ξ
∈ {
√

3/7, 1}, the three solutions in (B.11)-(B.13) coincide. Evaluating

the expression in (B.10) for λ
ξ
∈ [
√

3/7, 1] then gives that Î ′′′(µs(y)) T 0 for

µs(y) T 1
2
(1 − λ

ξ
). Accordingly, with

√
3/7 < d, for λ

ξ
∈ (d, 1], Î ′′(µs(y)) ≥

Î ′′(1
2
(1 − λ

ξ
)) > 0 for all µs(y) ∈ [0, 1 − λ

ξ
]. Thus, Î(µs(y)) is strictly convex on

[0, 1 − λ
ξ
] for λ

ξ
∈ (d, 1], and the global maxima lie at, given the symmetry at

1
2
(1− λ

ξ
), the two boundaries, µs(y) = 0 or µs(y) = 1− λ

ξ
.

We further divide the remaining case λ
ξ
∈ (1

2
, d] into two sub-cases, when λ

ξ
∈

(1
2
,
√

3/7) and when λ
ξ
∈ [
√

3/7, d]. We consider the latter case first. It follows

from the above that for λ
ξ
∈ [
√

3/7, d], we have that Î ′′(µs(y)) ≥ Î ′′(1
2
(1 − λ

ξ
))

for all µs(y) ∈ [0, 1 − λ
ξ
]. Given the symmetry of Î(µs(y)), we without loss of

generality focus on its behavior for µs(y) ∈ [0, 1
2
(1 − λ

ξ
)]. Note that for λ

ξ
∈

[
√

3/7, d], limµs(y)→0 Î
′′(µs(y)) = ∞ and recall that for λ

ξ
≤ d, Î ′′(1

2
(1− λ

ξ
)) ≤ 0.

Given that for λ
ξ
∈ [
√

3/7, 1], Î ′′′(µs(y)) < 0 for µs(y) < 1
2
(1− λ

ξ
), there exists a

unique k ∈ (0, 1
2
(1− λ

ξ
)] such that Î ′′(k) = 0. This further implies that there is at
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most one point in (0, 1
2
(1− λ

ξ
)) such that the first-order condition is satisfied, in

which case it corresponds to a local minimum; µs(y) = 1
2
(1− λ

ξ
) thus corresponds

to a unique local maximum. Given that, for λ
ξ
∈ [
√

3/7, d], Î(µs(y)) is strictly

convex for µs(y) sufficiently close to zero and concave (strictly concave for λ
ξ
< d)

in the neighborhood of 1
2
(1 − λ

ξ
), the global maximum is achieved either at the

unique local maximum at µs(y) = 1
2
(1− λ

ξ
) or at the boundary µs(y) = 0 or, by

symmetry, µs(y) = 1− λ
ξ
.

Finally, we consider λ
ξ
∈ (1

2
,
√

3/7). Note that for λ
ξ
∈ (1

2
,
√

3/7), the solution

in (B.11) satisfies that µ̂s(y) ∈ (0, 1
2
(1 − λ

ξ
)) and the solution in (B.13) satisfies

that µ̃s(y) ∈ (1
2
(1 − λ

ξ
), 1 − λ

ξ
). Similar to the above paragraph, the following

argument focuses on µs(y) ∈ [0, 1
2
(1 − λ

ξ
)] under the symmetry. Evaluating the

expression in (B.10) gives that Î ′′′(µs(y)) ≤ 0 for µs(y) ≤ µ̂s(y) and Î ′′′(µs(y)) > 0

for µs(y) ∈ (µ̂s(y), 1
2
(1− λ

ξ
)). Recall that for λ

ξ
in this range, we have that Î ′′(1

2
(1−

λ
ξ
)) < 0. Then, the fact that Î ′′′(µs(y)) > 0 for µs(y) ∈ (µ̂s(y), 1

2
(1− λ

ξ
)) implies

that Î ′′(µs(y)) < 0 for µs(y) ∈ (µ̂s(y), 1
2
(1 − λ

ξ
)). Note that for λ

ξ
∈ (1

2
,
√

3/7),

limµs(y)→0 Î
′′(µs(y)) = ∞. Thus, given that Î ′′′(µs(y)) ≤ 0 for µs(y) ≤ µ̂s(y),

there exists a unique v ∈ (0, µ̂s(y)] such that Î ′′(v) = 0. The argument from

the above paragraph then applies to establish that the global maximum is again

achieved either at the unique local maximum at µs(y) = 1
2
(1 − λ

ξ
) or at the

boundary µs(y) = 0 or, by symmetry, µs(y) = 1− λ
ξ
.

Substituting µs(y) = 1
2
(1 − λ

ξ
) into (B.8), we obtain 1

2
[(1 − λ

ξ
) log(1 − λ

ξ
) +

(1 + λ
ξ
) log(1 + λ

ξ
)], which is precisely the mutual information of the truthful

equilibrium; substituting µs(y) = 0 or µs(y) = 1− λ
ξ

into (B.8) and using 0 log 0 =

0, we obtain 1 + 1
2
[( ξ
λ
− 1) log(1 − λ

ξ
) + log λ

ξ
], which is precisely the mutual

information of the informative equilibrium in the direct response, which can be

replicated in the randomized response. The result follows from the fact that

c < d, where c ≈ 0.743 is the critical value in Lemma 2.
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Online Appendix C – Experimental Instructions

C.1 Instructions (RandomLow)

INSTRUCTION

Welcome to the experiment. This experiment studies decision making between

two individuals. In the following two hours or less, you will participate in 40

rounds of decision making. Please read the instructions below carefully; the cash

payment you will receive at the end of the experiment depends on how well you

make your decisions according to these instructions.

Your Role and Decision Group

Half of the participants will be randomly assigned the role of Member A and

the other half the role of Member B. Your role will remain fixed throughout the

experiment. In each round, one Member A will be paired with one Member B to

form a group of two. The two members in a group make decisions that will affect

their rewards in the round. Participants will be randomly rematched after each

round to form new groups.

Your Decision in Each Round

In each round and for each group, the computer will randomly select, with

equal chance, either SQUARE or TRIANGLE. The selected shape will be revealed

to Member A. Independently, the computer will also randomly select one of the

following two questions for Member A: “Was SQUARE selected?” or “Was TRI-

ANGLE selected?” The chance that “WAS SQUARE selected?” will be drawn

is 40%, and the chance that “Was TRIANGLE selected?” will be drawn is 60%.

Note that the two pieces of information—which shape and which question are

selected—is only known to Member A; Member B is not provided with such

information.

Member A’s Decision

At the beginning of each round, the selected shape and question will be shown

on your screen. You respond to the selected question by clicking either “Yes” or
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“No”, and your decision in the round is completed. You are free to choose your

response; it is not part of the instructions that you have to respond to indicate

the actual shape selected.

Once you click the button, your response will be shown on the screen of the

Member B that you are paired with in the round. Be reminded again that he/she

will only see your “Yes”/“No” response and will not know which question you

are responding to nor which shape was selected.

Member B’s Decision

Based on the “Yes”/“No” response of Member A, you will be asked to pre-

dict the shape that was selected by the computer. You state your prediction in

percentage terms, similar to how rain forecasts are typically reported, i.e., there

is an X% chance of rain (so with (100−X)% chance there will be no rain). You

will be rewarded according to the accuracy of your prediction.

In each round, you will be presented with a Yellow Box that contains 100

shapes. You will be asked to decide how many shapes are SQUARES and how

many are TRIANGLES. The numbers of SQUARES and TRIANGLES in the

Yellow Box represent your prediction. For example, if the number of SQUARES

is 70 (so the number of TRIANGLES is 30), it means that you predict that there

is a 70% (30%) chance that the computer has selected SQUARE (TRIANGLE).

You input your prediction by clicking on a line with a green ball on it that lies

inside the Yellow Box. The left end of the line represents 0 SQUARES and

100 TRIANGLES; the right end represents 100 SQUARES and 0 TRIANGLES.

You can choose any integer point in between. When you click on the line, the

green ball will move to the point you click on, and the corresponding numbers of

SQUARES and TRIANGLES will be shown inside � and 4 in the Yellow Box.

You adjust your click until you arrive at your desired numbers, after which you

click the submit button. Your decision in the round is then completed. (You still

have to perform some manual task to have your reward in the round determined.

More information will provided below.)

Your Reward in Each Round
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Your reward in the experiment will be expressed in terms of experimental

currency unit (ECU). The following describes how your reward in each round is

determined.

Member A’s Reward

The amount of ECU you earn in a round depends on two factors. The first is

whether your “Yes”/“No” response to the selected question indicates which shape

was actually selected by the computer. If it does, you will receive 300 ECU; if it

does not, you will receive 250 ECU.

The second factor is Member B’s prediction of the chance that SQUARE was

selected. The amount of ECU you earn from responding to the question (either

300 or 250) will be reduced by twice the number of SQUARES in Member B’s

Yellow Box.

Here is an example of two different scenarios in which your earnings will both

be 160 ECU:

1. The computer selected SQUARE and “Was TRIANGLE selected?” You

responded “No”. Since your response indicates which shape was actually

selected, you receive 300 ECU for the first part. If Member B predicts a

70% chance of SQUARE by having 70 SQUARES in the Yellow Box, your

earning in the round will be 300− (2× 70) = 160 ECU.

2. The computer selected TRIANGLE and “Was SQUARE selected?” You

responded “Yes”. Since your response does not indicate which shape was

actually selected, you receive 250 ECU for the first part. If Member B

predicts a 45% chance of SQUARE by having 45 SQUARES in the Yellow

Box, your earning in the round will be 250− (2× 45) = 160 ECU.

Member B’s Reward

The amount of ECU you earn in a round, either 300 ECU or 50 ECU, is

determined by the procedure described below. The reward procedure provides

incentives to you to state your prediction according to what you truly believe is
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the chance that SQUARE/TRIANGLE was selected: your earning in expected

terms will be highest if you state your true belief.

You will be presented with another box, a Green Box, that helps determine

your earning. The Green Box also contains 100 shapes. At the beginning of

each round, a number is randomly drawn with equal chance from 1 to 100 to

determine the number of SQUARES in the Green Box (100 minus the number

drawn is the number of TRIANGLES). Since this happens at the beginning of

the round, it is not influenced by any decision made during the round. It is

also independent of the shape and question that are selected for Member A. The

numbers of SQUARES and TRIANGLES in the Green Box will be revealed to

you only after you submit the numbers for the Yellow Box. Your earning in the

round will be determined as follows:

1. If the number of SQUARES in the Yellow Box is larger than or equal to

the numbers of SQUARE in the Green Box, your earning will depend on

which shape was selected and revealed to Member A at the beginning of

the round:

(a) If it was SQUARE, you will receive 300 ECU.

(b) If it was TRIANGLE, you will receive 50 ECU.

2. If the number of SQUARES in the Yellow Box is smaller than the numbers

of SQUARE in the Green Box, you will randomly draw a shape from the

Green Box:

(a) If the randomly drawn shape is a SQUARE, you will receive 300 ECU.

(b) If the randomly drawn shape is a TRIANGLE, you will receive 50

ECU.

Information Feedback

At the end of each round, the computer will provide a summary for the round:

which shape and question were selected and revealed to Member A, Member A’s

response, the number of SQUARES in Member B’s Yellow Box, and your earning

in ECU.
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Your Cash Payment

The experimenter randomly selects 3 rounds out of 40 to calculate your cash

payment. (So it is in your best interest to take each round seriously.) Your total

cash payment at the end of the experiment will be the average amount of ECU

you earned in the 3 selected rounds divided by 10 (i.e., 10 ECU = 1 USD) plus

a $5 show-up fee.

Quiz and Practice

To ensure your understanding of the instructions, we will provide you with

a quiz and practice rounds. We will go through the quiz after you answer it on

your own. You will then participate in 6 practice rounds, where you will have

a chance to play both Member A (3 rounds) and Member B (3 rounds). The

practice rounds are part of the instructions which are not relevant to your cash

payment; its objective is to get you familiar with the computer interface and the

flow of the decisions in each round.

Once the practice rounds are over, the computer will tell you “The official

rounds begin now!” You will be randomly assigned the role of either Member A

or Member B, which will not change during the 40 official rounds.

Adminstration

Your decisions as well as your monetary payment will be kept confidential.

Remember that you have to make your decisions entirely on your own; please do

not discuss your decisions with any other participants.

Upon finishing the experiment, you will receive your cash payment. You will

be asked to sign your name to acknowledge your receipt of the payment (which

will not be used for tax purposes). You are then free to leave.

If you have any question, please raise your hand now. We will answer your

question individually. If there is no question, we will proceed to the quiz.
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C.2 z-Tree Screen Shots

Training round: The first screen of the sender subject.
Figure 6: Member A’s Response Screen

Figure 7: Member B’s Prediction Screen

The number of SQUARES in the GREEN BOX is revealed. In this example, the 
YELLOW BOX has more SQUARES than the GREEN BOX. So, the reward will be 
determined by the actual shape Pressing the button “ACTUAL SHAPE” showsdetermined by the actual shape. Pressing the button  ACTUAL SHAPE  shows 
the selected shape in the next screen.

Figure 8: Member B’s Reward Screen
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